Skip to main content
Genetics logoLink to Genetics
. 1995 Jun;140(2):679–695. doi: 10.1093/genetics/140.2.679

Microsatellite Variation in Honey Bee (Apis Mellifera L.) Populations: Hierarchical Genetic Structure and Test of the Infinite Allele and Stepwise Mutation Models

A Estoup 1, L Garnery 1, M Solignac 1, J M Cornuet 1
PMCID: PMC1206644  PMID: 7498746

Abstract

Samples from nine populations belonging to three African (intermissa, scutellata and capensis) and four European (mellifera, ligustica, carnica and cecropia) Apis mellifera subspecies were scored for seven microsatellite loci. A large amount of genetic variation (between seven and 30 alleles per locus) was detected. Average heterozygosity and average number of alleles were significantly higher in African than in European subspecies, in agreement with larger effective population sizes in Africa. Microsatellite analyses confirmed that A. mellifera evolved in three distinct and deeply differentiated lineages previously detected by morphological and mitochondrial DNA studies. Dendrogram analysis of workers from a given population indicated that super-sisters cluster together when using a sufficient number of microsatellite data whereas half-sisters do not. An index of classification was derived to summarize the clustering of different taxonomic levels in large phylogenetic trees based on individual genotypes. Finally, individual population X loci data were used to test the adequacy of the two alternative mutation models, the infinite allele model (IAM) and the stepwise mutation models. The better fit overall of the IAM probably results from the majority of the microsatellites used including repeats of two or three different length motifs (compound microsatellites).

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowcock A. M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J. R., Cavalli-Sforza L. L. High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 1994 Mar 31;368(6470):455–457. doi: 10.1038/368455a0. [DOI] [PubMed] [Google Scholar]
  2. Callen D. F., Thompson A. D., Shen Y., Phillips H. A., Richards R. I., Mulley J. C., Sutherland G. R. Incidence and origin of "null" alleles in the (AC)n microsatellite markers. Am J Hum Genet. 1993 May;52(5):922–927. [PMC free article] [PubMed] [Google Scholar]
  3. Chakraborty R., Jin L. A unified approach to study hypervariable polymorphisms: statistical considerations of determining relatedness and population distances. EXS. 1993;67:153–175. doi: 10.1007/978-3-0348-8583-6_14. [DOI] [PubMed] [Google Scholar]
  4. Chakraborty R., Neel J. V. Description and validation of a method for simultaneous estimation of effective population size and mutation rate from human population data. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9407–9411. doi: 10.1073/pnas.86.23.9407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chakraborty R., Weiss K. M. Genetic variation of the mitochondrial DNA genome in American Indians is at mutation-drift equilibrium. Am J Phys Anthropol. 1991 Dec;86(4):497–506. doi: 10.1002/ajpa.1330860405. [DOI] [PubMed] [Google Scholar]
  6. Deka R., Chakroborty R., Ferrell R. E. A population genetic study of six VNTR loci in three ethnically defined populations. Genomics. 1991 Sep;11(1):83–92. doi: 10.1016/0888-7543(91)90104-m. [DOI] [PubMed] [Google Scholar]
  7. Di Rienzo A., Peterson A. C., Garza J. C., Valdes A. M., Slatkin M., Freimer N. B. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166–3170. doi: 10.1073/pnas.91.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edwards A., Hammond H. A., Jin L., Caskey C. T., Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics. 1992 Feb;12(2):241–253. doi: 10.1016/0888-7543(92)90371-x. [DOI] [PubMed] [Google Scholar]
  9. Estoup A., Solignac M., Harry M., Cornuet J. M. Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris. Nucleic Acids Res. 1993 Mar 25;21(6):1427–1431. doi: 10.1093/nar/21.6.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ewens W. J. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972 Mar;3(1):87–112. doi: 10.1016/0040-5809(72)90035-4. [DOI] [PubMed] [Google Scholar]
  11. Garnery L., Cornuet J. M., Solignac M. Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Mol Ecol. 1992 Oct;1(3):145–154. doi: 10.1111/j.1365-294x.1992.tb00170.x. [DOI] [PubMed] [Google Scholar]
  12. Gottelli D., Sillero-Zubiri C., Applebaum G. D., Roy M. S., Girman D. J., Garcia-Moreno J., Ostrander E. A., Wayne R. K. Molecular genetics of the most endangered canid: the Ethiopian wolf Canis simensis. Mol Ecol. 1994 Aug;3(4):301–312. doi: 10.1111/j.1365-294x.1994.tb00070.x. [DOI] [PubMed] [Google Scholar]
  13. Hedges S. B. The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. Mol Biol Evol. 1992 Mar;9(2):366–369. doi: 10.1093/oxfordjournals.molbev.a040725. [DOI] [PubMed] [Google Scholar]
  14. Hunt G. J., Page R. E., Jr Linkage map of the honey bee, Apis mellifera, based on RAPD markers. Genetics. 1995 Mar;139(3):1371–1382. doi: 10.1093/genetics/139.3.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hunt J. Application of a pressure area risk calculator in an intensive care unit. Intensive Crit Care Nurs. 1993 Dec;9(4):226–231. doi: 10.1016/s0964-3397(05)80003-5. [DOI] [PubMed] [Google Scholar]
  16. Kimura M., Ohta T. Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2868–2872. doi: 10.1073/pnas.75.6.2868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moran P. A. Wandering distributions and the electrophoretic profile. II. Theor Popul Biol. 1976 Oct;10(2):145–149. doi: 10.1016/0040-5809(76)90012-5. [DOI] [PubMed] [Google Scholar]
  18. Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
  19. Pamilo P., Crozier R. H. Genic Variation in Male Haploids under Deterministic Selection. Genetics. 1981 May;98(1):199–214. doi: 10.1093/genetics/98.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shriver M. D., Jin L., Chakraborty R., Boerwinkle E. VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics. 1993 Jul;134(3):983–993. doi: 10.1093/genetics/134.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tarès S., Cornuet J. M., Abad P. Characterization of an unusually conserved AluI highly reiterated DNA sequence family from the honeybee, Apis mellifera. Genetics. 1993 Aug;134(4):1195–1204. doi: 10.1093/genetics/134.4.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Taylor A. C., Sherwin W. B., Wayne R. K. Genetic variation of microsatellite loci in a bottlenecked species: the northern hairy-nosed wombat Lasiorhinus krefftii. Mol Ecol. 1994 Aug;3(4):277–290. doi: 10.1111/j.1365-294x.1994.tb00068.x. [DOI] [PubMed] [Google Scholar]
  23. Valdes A. M., Slatkin M., Freimer N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics. 1993 Mar;133(3):737–749. doi: 10.1093/genetics/133.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES