Abstract
Studies of genetic variation at allozyme loci, assumed to be selectively neutral, have provided valuable insights into the genetic structure of numerous populations. The degree to which population structure of allozyme variation reflects that of quantitative traits, however, is not well resolved. Here, we compare estimates of population differentiation (F(ST)) of 11 populations for allozymes with those for nine discrete and nine continuous morphological traits. Overall, the allozymes have the lowest F(ST) estimates, indicating relatively little population differentiation. Excepting two traits, petal width and long internode length, the continuous morphological traits have estimates similar to those from allozymes. The discrete morphological traits tend to have the highest estimates. On a single trait basis, estimates of F(ST) for four discrete and two continuous traits are higher than those for allozymes. A more detailed (narrow-sense quantitative) genetic study of two populations suggests that these estimates of F(ST) may underestimate the true value because of dominance. Clustering analyses show that the pattern of differentiation for the discrete morphological traits strongly reflects the geographical distribution of the populations, whereas the patterns for the continuous traits and allozymes do not. These results suggest that selection has been occurring on the discrete morphological traits, selecting toward a common optimum within each geographic group, and optima differing among geographic groups.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowcock A. M., Kidd J. R., Mountain J. L., Hebert J. M., Carotenuto L., Kidd K. K., Cavalli-Sforza L. L. Drift, admixture, and selection in human evolution: a study with DNA polymorphisms. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):839–843. doi: 10.1073/pnas.88.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowcock A., Cavalli-Sforza L. The study of variation in the human genome. Genomics. 1991 Oct;11(2):491–498. doi: 10.1016/0888-7543(91)90170-j. [DOI] [PubMed] [Google Scholar]
- Carr A. J., Percival R. C., Rogers K., Harrington C. T. Pyoderma gangrenosum after cholecystectomy. Br Med J (Clin Res Ed) 1986 Mar 15;292(6522):729–730. doi: 10.1136/bmj.292.6522.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clegg M. T., Allard R. W. Viability versus Fecundity Selection in the Slender Wild Oat, Avena barbata L. Science. 1973 Aug 17;181(4100):667–668. doi: 10.1126/science.181.4100.667. [DOI] [PubMed] [Google Scholar]
- Clegg M. T., Kahler A. L., Allard R. W. Estimation of life cycle components of selection in an experimental plant population. Genetics. 1978 Aug;89(4):765–792. doi: 10.1093/genetics/89.4.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cockerham C. C., Weir B. S. Estimation of inbreeding parameters in stratified populations. Ann Hum Genet. 1986 Jul;50(Pt 3):271–281. doi: 10.1111/j.1469-1809.1986.tb01048.x. [DOI] [PubMed] [Google Scholar]
- Coyne J. A., Beecham E. Heritability of two morphological characters within and among natural populations of Drosophila melanogaster. Genetics. 1987 Dec;117(4):727–737. doi: 10.1093/genetics/117.4.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karl S. A., Avise J. C. Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science. 1992 Apr 3;256(5053):100–102. doi: 10.1126/science.1348870. [DOI] [PubMed] [Google Scholar]
- Lewontin R. C., Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973 May;74(1):175–195. doi: 10.1093/genetics/74.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nei M., Chesser R. K. Estimation of fixation indices and gene diversities. Ann Hum Genet. 1983 Jul;47(Pt 3):253–259. doi: 10.1111/j.1469-1809.1983.tb00993.x. [DOI] [PubMed] [Google Scholar]
- Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978 Jul;89(3):583–590. doi: 10.1093/genetics/89.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nei M. F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet. 1977 Oct;41(2):225–233. doi: 10.1111/j.1469-1809.1977.tb01918.x. [DOI] [PubMed] [Google Scholar]
- Prout T., Barker J. S. Ecological aspects of the heritability of body size in Drosophila buzzatii. Genetics. 1989 Dec;123(4):803–813. doi: 10.1093/genetics/123.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prout T., Barker J. S. F statistics in Drosophila buzzatii: selection, population size and inbreeding. Genetics. 1993 May;134(1):369–375. doi: 10.1093/genetics/134.1.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rausher M. D., Fry J. D. Effects of a locus affecting floral pigmentation in Ipomoea purpurea on female fitness components. Genetics. 1993 Aug;134(4):1237–1247. doi: 10.1093/genetics/134.4.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds J., Weir B. S., Cockerham C. C. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics. 1983 Nov;105(3):767–779. doi: 10.1093/genetics/105.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers A. R., Harpending H. C. Population structure and quantitative characters. Genetics. 1983 Dec;105(4):985–1002. doi: 10.1093/genetics/105.4.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slatkin M. Gene flow and the geographic structure of natural populations. Science. 1987 May 15;236(4803):787–792. doi: 10.1126/science.3576198. [DOI] [PubMed] [Google Scholar]
- Spitze K. Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics. 1993 Oct;135(2):367–374. doi: 10.1093/genetics/135.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright S. Isolation by Distance. Genetics. 1943 Mar;28(2):114–138. doi: 10.1093/genetics/28.2.114. [DOI] [PMC free article] [PubMed] [Google Scholar]