Skip to main content
Genetics logoLink to Genetics
. 1995 Jun;140(2):745–754. doi: 10.1093/genetics/140.2.745

Dominance Is the Major Genetic Basis of Heterosis in Rice as Revealed by Qtl Analysis Using Molecular Markers

J Xiao 1, J Li 1, L Yuan 1, S D Tanksley 1
PMCID: PMC1206649  PMID: 7498751

Abstract

A set of 194 F(7) lines derived from a subspecific rice cross showing strong F(1) heterosis was backcrossed to the two parents. The materials (388 BC(1)F(7) lines, 194 F(8) lines, two parents, F(1)) were phenotyped for 12 quantitative traits. A total of 37 significant QTLs (LOD >/= 2.0) was detected through 141 RFLP markers in the BC(1)F(7) populations. Twenty-seven (73%) quantitative trait loci (QTLs) were detected in only one of the BC(1)F(7) populations. In 82% of these cases, the heterozygotes were superior to the respective homozygotes. The remaining 10 (27%) QTLs were detected in both BC(1)F(7) populations, and the heterozygote had a phenotype falling between those of the two homozygotes and in no instances were the heterozygotes found to be superior to both homozygotes. These results suggest that dominance complementation is the major genetic basis of heterosis in rice. This conclusion was strengthened by the finding that there was no correlation between most traits and overall genome heterozygosity and that there were some recombinant inbred lines in the F(8) population having phenotypic values superior to the F(1) for all of the traits evaluated--a result not expected if overdominance was a major contributor to heterosis. Digenic epistasis was not evident.

Full Text

The Full Text of this article is available as a PDF (990.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn S., Tanksley S. D. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7980–7984. doi: 10.1073/pnas.90.17.7980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bruce A. B. THE MENDELIAN THEORY OF HEREDITY AND THE AUGMENTATION OF VIGOR. Science. 1910 Nov 4;32(827):627–628. doi: 10.1126/science.32.827.627-a. [DOI] [PubMed] [Google Scholar]
  3. Burr B., Burr F. A., Thompson K. H., Albertson M. C., Stuber C. W. Gene mapping with recombinant inbreds in maize. Genetics. 1988 Mar;118(3):519–526. doi: 10.1093/genetics/118.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Causse M. A., Fulton T. M., Cho Y. G., Ahn S. N., Chunwongse J., Wu K., Xiao J., Yu Z., Ronald P. C., Harrington S. E. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics. 1994 Dec;138(4):1251–1274. doi: 10.1093/genetics/138.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davenport C. B. DEGENERATION, ALBINISM AND INBREEDING. Science. 1908 Oct 2;28(718):454–455. doi: 10.1126/science.28.718.454-b. [DOI] [PubMed] [Google Scholar]
  6. East E M. Heterosis. Genetics. 1936 Jul;21(4):375–397. doi: 10.1093/genetics/21.4.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edwards M. D., Stuber C. W., Wendel J. F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics. 1987 May;116(1):113–125. doi: 10.1093/genetics/116.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones D. F. Dominance of Linked Factors as a Means of Accounting for Heterosis. Proc Natl Acad Sci U S A. 1917 Apr;3(4):310–312. doi: 10.1073/pnas.3.4.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  11. Paterson A. H., Damon S., Hewitt J. D., Zamir D., Rabinowitch H. D., Lincoln S. E., Lander E. S., Tanksley S. D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics. 1991 Jan;127(1):181–197. doi: 10.1093/genetics/127.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Paterson A. H., DeVerna J. W., Lanini B., Tanksley S. D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics. 1990 Mar;124(3):735–742. doi: 10.1093/genetics/124.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988 Oct 20;335(6192):721–726. doi: 10.1038/335721a0. [DOI] [PubMed] [Google Scholar]
  14. Stuber C. W., Lincoln S. E., Wolff D. W., Helentjaris T., Lander E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992 Nov;132(3):823–839. doi: 10.1093/genetics/132.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wang G. L., Mackill D. J., Bonman J. M., McCouch S. R., Champoux M. C., Nelson R. J. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics. 1994 Apr;136(4):1421–1434. doi: 10.1093/genetics/136.4.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES