Skip to main content
Genetics logoLink to Genetics
. 1995 Jun;140(2):767–782. doi: 10.1093/genetics/140.2.767

Separating Population Structure from Population History: A Cladistic Analysis of the Geographical Distribution of Mitochondrial DNA Haplotypes in the Tiger Salamander, Ambystoma Tigrinum

A R Templeton 1, E Routman 1, C A Phillips 1
PMCID: PMC1206651  PMID: 7498753

Abstract

Nonrandom associations of alleles or haplotypes with geographical location can arise from restricted gene flow, historical events (fragmentation, range expansion, colonization), or any mixture of these factors. In this paper, we show how a nested cladistic analysis of geographical distances can be used to test the null hypothesis of no geographical association of haplotypes, test the hypothesis that significant associations are due to restricted gene flow, and identify patterns of significant association that are due to historical events. In this last case, criteria are given to discriminate among contiguous range expansion, long-distance colonization, and population fragmentation. The ability to make these discriminations depends critically upon an adequate geographical sampling design. These points are illustrated with a worked example: mitochondrial DNA haplotypes in the salamander Ambystoma tigrinum. For this example, prior information exists about restricted gene flow and likely historical events, and the nested cladistic analyses were completely concordant with this prior information. This concordance establishes the plausibility of this nested cladistic approach, but much future work will be necessary to demonstrate robustness and to explore the power and accuracy of this procedure.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonarakis S. E., Boehm C. D., Serjeant G. R., Theisen C. E., Dover G. J., Kazazian H. H., Jr Origin of the beta S-globin gene in blacks: the contribution of recurrent mutation or gene conversion or both. Proc Natl Acad Sci U S A. 1984 Feb;81(3):853–856. doi: 10.1073/pnas.81.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avise J. C., Ball R. M., Arnold J. Current versus historical population sizes in vertebrate species with high gene flow: a comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. Mol Biol Evol. 1988 Jul;5(4):331–344. doi: 10.1093/oxfordjournals.molbev.a040504. [DOI] [PubMed] [Google Scholar]
  3. Cann R. L., Stoneking M., Wilson A. C. Mitochondrial DNA and human evolution. Nature. 1987 Jan 1;325(6099):31–36. doi: 10.1038/325031a0. [DOI] [PubMed] [Google Scholar]
  4. Crandall K. A., Templeton A. R. Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics. 1993 Jul;134(3):959–969. doi: 10.1093/genetics/134.3.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Excoffier L., Smouse P. E. Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics. 1994 Jan;136(1):343–359. doi: 10.1093/genetics/136.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hey J. The structure of genealogies and the distribution of fixed differences between DNA sequence samples from natural populations. Genetics. 1991 Aug;128(4):831–840. doi: 10.1093/genetics/128.4.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hudson R. R., Boos D. D., Kaplan N. L. A statistical test for detecting geographic subdivision. Mol Biol Evol. 1992 Jan;9(1):138–151. doi: 10.1093/oxfordjournals.molbev.a040703. [DOI] [PubMed] [Google Scholar]
  9. Hudson R. R., Slatkin M., Maddison W. P. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992 Oct;132(2):583–589. doi: 10.1093/genetics/132.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kimura M, Weiss G H. The Stepping Stone Model of Population Structure and the Decrease of Genetic Correlation with Distance. Genetics. 1964 Apr;49(4):561–576. doi: 10.1093/genetics/49.4.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lynch M., Crease T. J. The analysis of population survey data on DNA sequence variation. Mol Biol Evol. 1990 Jul;7(4):377–394. doi: 10.1093/oxfordjournals.molbev.a040607. [DOI] [PubMed] [Google Scholar]
  12. Nath H. B., Griffiths R. C. The coalescent in two colonies with symmetric migration. J Math Biol. 1993;31(8):841–851. doi: 10.1007/BF00168049. [DOI] [PubMed] [Google Scholar]
  13. Neigel J. E., Avise J. C. Application of a random walk model to geographic distributions of animal mitochondrial DNA variation. Genetics. 1993 Dec;135(4):1209–1220. doi: 10.1093/genetics/135.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. O'Brien S. J. Ghetto legacy. Curr Biol. 1991 Aug;1(4):209–211. doi: 10.1016/0960-9822(91)90058-5. [DOI] [PubMed] [Google Scholar]
  15. Prum B., Guilloud-Bataille M., Clerget-Darpoux F. On the use of chi 2 tests for nested categorized data. Ann Hum Genet. 1990 Oct;54(Pt 4):315–320. doi: 10.1111/j.1469-1809.1990.tb00387.x. [DOI] [PubMed] [Google Scholar]
  16. Roff D. A., Bentzen P. The statistical analysis of mitochondrial DNA polymorphisms: chi 2 and the problem of small samples. Mol Biol Evol. 1989 Sep;6(5):539–545. doi: 10.1093/oxfordjournals.molbev.a040568. [DOI] [PubMed] [Google Scholar]
  17. Slatkin M. Detecting small amounts of gene flow from phylogenies of alleles. Genetics. 1989 Mar;121(3):609–612. doi: 10.1093/genetics/121.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Slatkin M. Inbreeding coefficients and coalescence times. Genet Res. 1991 Oct;58(2):167–175. doi: 10.1017/s0016672300029827. [DOI] [PubMed] [Google Scholar]
  19. Slatkin M., Maddison W. P. Detecting isolation by distance using phylogenies of genes. Genetics. 1990 Sep;126(1):249–260. doi: 10.1093/genetics/126.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Templeton A. R., Boerwinkle E., Sing C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics. 1987 Oct;117(2):343–351. doi: 10.1093/genetics/117.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Templeton A. R., Crandall K. A., Sing C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992 Oct;132(2):619–633. doi: 10.1093/genetics/132.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Templeton A. R. Human origins and analysis of mitochondrial DNA sequences. Science. 1992 Feb 7;255(5045):737–737. doi: 10.1126/science.1590849. [DOI] [PubMed] [Google Scholar]
  23. Templeton A. R., Sing C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics. 1993 Jun;134(2):659–669. doi: 10.1093/genetics/134.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Templeton A. R., Sing C. F., Kessling A., Humphries S. A cladistic analysis of phenotype associations with haplotypes inferred from restriction endonuclease mapping. II. The analysis of natural populations. Genetics. 1988 Dec;120(4):1145–1154. doi: 10.1093/genetics/120.4.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES