Skip to main content
Genetics logoLink to Genetics
. 1995 Jul;140(3):1087–1098. doi: 10.1093/genetics/140.3.1087

Characterization of the Major Transcripts Encoded by the Regulatory Mudr Transposable Element of Maize

R J Hershberger 1, M I Benito 1, K J Hardeman 1, C Warren 1, V L Chandler 1, V Walbot 1
PMCID: PMC1206663  PMID: 7672579

Abstract

The MuDR element controls the transposition of the Mutator transposable element family in maize. Previous studies reported the presence of two major MuDR-homologous transcripts that correlate with Mutator activity. In this study, we describe the structure and processing of these two major transcripts. The transcripts are convergent, initiating from opposite ends of the element within the 220-bp terminal inverted repeats. The convergent transcripts do not overlap, and only 200 bp of internal MuDR sequences are not transcribed. Cloning and sequencing of multiple MuDR cDNAs revealed unusual intron/exon junctions, differential splicing, and multiple polyadenylation sites. RNase protection experiments indicated that some splicing failure occurs in young seedlings, and that a low level of antisense RNA exists for both transcripts. On a whole plant level, the presence of the major MuDR transcripts strictly correlates with Mutator activity in that no MuDR transcripts are observed in non-Mutator or inactive Mutator stocks. Examination of various tissues from active Mutator stocks indicates that the two transcripts are present in all organs and tissues tested, including those with no apparent transposition activity. This suggests that Mutator activity is not simply controlled by the level of the major MuDR transcripts.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown J. W., Simpson C. G., Simpson G. G., Turnbull-Ross A. D., Clark G. P. Plant pre-mRNA splicing and splicing components. Philos Trans R Soc Lond B Biol Sci. 1993 Nov 29;342(1301):217–224. doi: 10.1098/rstb.1993.0150. [DOI] [PubMed] [Google Scholar]
  2. Chandler V. L., Hardeman K. J. The Mu elements of Zea mays. Adv Genet. 1992;30:77–122. doi: 10.1016/s0065-2660(08)60319-3. [DOI] [PubMed] [Google Scholar]
  3. Chomet P., Lisch D., Hardeman K. J., Chandler V. L., Freeling M. Identification of a regulatory transposon that controls the Mutator transposable element system in maize. Genetics. 1991 Sep;129(1):261–270. doi: 10.1093/genetics/129.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eisen J. A., Benito M. I., Walbot V. Sequence similarity of putative transposases links the maize Mutator autonomous element and a group of bacterial insertion sequences. Nucleic Acids Res. 1994 Jul 11;22(13):2634–2636. doi: 10.1093/nar/22.13.2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  6. Frey M., Reinecke J., Grant S., Saedler H., Gierl A. Excision of the En/Spm transposable element of Zea mays requires two element-encoded proteins. EMBO J. 1990 Dec;9(12):4037–4044. doi: 10.1002/j.1460-2075.1990.tb07625.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goodall G. J., Filipowicz W. Different effects of intron nucleotide composition and secondary structure on pre-mRNA splicing in monocot and dicot plants. EMBO J. 1991 Sep;10(9):2635–2644. doi: 10.1002/j.1460-2075.1991.tb07806.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greene B., Walko R., Hake S. Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics. 1994 Dec;138(4):1275–1285. doi: 10.1093/genetics/138.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hardeman K. J., Chandler V. L. Two maize genes are each targeted predominantly by distinct classes of Mu elements. Genetics. 1993 Dec;135(4):1141–1150. doi: 10.1093/genetics/135.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jackson I. J. A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res. 1991 Jul 25;19(14):3795–3798. doi: 10.1093/nar/19.14.3795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. James M. G., Scanlon M. J., Qin M., Robertson D. S., Myers A. M. DNA sequence and transcript analysis of transposon MuA2, a regulator of Mutator transposable element activity in maize. Plant Mol Biol. 1993 Mar;21(6):1181–1185. doi: 10.1007/BF00023614. [DOI] [PubMed] [Google Scholar]
  12. Lankenau S., Corces V. G., Lankenau D. H. The Drosophila micropia retrotransposon encodes a testis-specific antisense RNA complementary to reverse transcriptase. Mol Cell Biol. 1994 Mar;14(3):1764–1775. doi: 10.1128/mcb.14.3.1764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lemaitre B., Ronsseray S., Coen D. Maternal repression of the P element promoter in the germline of Drosophila melanogaster: a model for the P cytotype. Genetics. 1993 Sep;135(1):149–160. doi: 10.1093/genetics/135.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lerner C. G., Inouye M. Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability. Nucleic Acids Res. 1990 Aug 11;18(15):4631–4631. doi: 10.1093/nar/18.15.4631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Levy A. A., Britt A. B., Luehrsen K. R., Chandler V. L., Warren C., Walbot V. Developmental and genetic aspects of Mutator excision in maize. Dev Genet. 1989;10(6):520–531. doi: 10.1002/dvg.1020100611. [DOI] [PubMed] [Google Scholar]
  16. Levy A. A., Walbot V. Molecular analysis of the loss of somatic instability in the bz2::mu1 allele of maize. Mol Gen Genet. 1991 Sep;229(1):147–151. doi: 10.1007/BF00264223. [DOI] [PubMed] [Google Scholar]
  17. Levy A. A., Walbot V. Regulation of the timing of transposable element excision during maize development. Science. 1990 Jun 22;248(4962):1534–1537. doi: 10.1126/science.2163107. [DOI] [PubMed] [Google Scholar]
  18. Luehrsen K. R., Walbot V. Addition of A- and U-rich sequence increases the splicing efficiency of a deleted form of a maize intron. Plant Mol Biol. 1994 Feb;24(3):449–463. doi: 10.1007/BF00024113. [DOI] [PubMed] [Google Scholar]
  19. Masson P., Rutherford G., Banks J. A., Fedoroff N. Essential large transcripts of the maize Spm transposable element are generated by alternative splicing. Cell. 1989 Aug 25;58(4):755–765. doi: 10.1016/0092-8674(89)90109-8. [DOI] [PubMed] [Google Scholar]
  20. Masson P., Strem M., Fedoroff N. The tnpA and tnpD gene products of the Spm element are required for transposition in tobacco. Plant Cell. 1991 Jan;3(1):73–85. doi: 10.1105/tpc.3.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McKeown M. Alternative mRNA splicing. Annu Rev Cell Biol. 1992;8:133–155. doi: 10.1146/annurev.cb.08.110192.001025. [DOI] [PubMed] [Google Scholar]
  22. Nash J., Luehrsen K. R., Walbot V. Bronze-2 gene of maize: reconstruction of a wild-type allele and analysis of transcription and splicing. Plant Cell. 1990 Nov;2(11):1039–1049. doi: 10.1105/tpc.2.11.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rasmusson K. E., Raymond J. D., Simmons M. J. Repression of hybrid dysgenesis in Drosophila melanogaster by individual naturally occurring P elements. Genetics. 1993 Mar;133(3):605–622. doi: 10.1093/genetics/133.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rio D. C. Regulation of Drosophila P element transposition. Trends Genet. 1991 Sep;7(9):282–287. doi: 10.1016/0168-9525(91)90309-E. [DOI] [PubMed] [Google Scholar]
  25. Rio D. C. Splicing of pre-mRNA: mechanism, regulation and role in development. Curr Opin Genet Dev. 1993 Aug;3(4):574–584. doi: 10.1016/0959-437x(93)90093-5. [DOI] [PubMed] [Google Scholar]
  26. Robertson D. S. Mutator activity in maize: timing of its activation in ontogeny. Science. 1981 Sep 25;213(4515):1515–1517. doi: 10.1126/science.213.4515.1515. [DOI] [PubMed] [Google Scholar]
  27. Schläppi M., Raina R., Fedoroff N. Epigenetic regulation of the maize Spm transposable element: novel activation of a methylated promoter by TnpA. Cell. 1994 May 6;77(3):427–437. doi: 10.1016/0092-8674(94)90157-0. [DOI] [PubMed] [Google Scholar]
  28. Schnable P. S., Peterson P. A. The Mutator-Related Cy Transposable Element of Zea Mays L. Behaves as a near-Mendelian Factor. Genetics. 1988 Oct;120(2):587–596. doi: 10.1093/genetics/120.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Scofield S. R., English J. J., Jones J. D. High level expression of the Activator transposase gene inhibits the excision of Dissociation in tobacco cotyledons. Cell. 1993 Nov 5;75(3):507–517. doi: 10.1016/0092-8674(93)90385-4. [DOI] [PubMed] [Google Scholar]
  30. Zhao Z. Y., Sundaresan V. Binding sites for maize nuclear proteins in the terminal inverted repeats of the Mu1 transposable element. Mol Gen Genet. 1991 Sep;229(1):17–26. doi: 10.1007/BF00264208. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES