Abstract
Saccharomyces cerevisiae can grow on glycine as sole nitrogen source and can convert glycine to serine via the reaction catalyzed by the glycine decarboxylase multienzyme complex (GDC). Yeast strains with mutations in the single gene for lipoamide dehydrogenase (lpd1) lack GDC activity, as well as the other three 2-oxoacid dehydrogenases dependent on this enzyme. The LPD1 gene product is also required for cells to utilize glycine as sole nitrogen source. The effect of mutations in LPD1 (L-subunit of GDC), SER1 (synthesis of serine from 3-phosphoglycerate), ADE3 (cytoplasmic synthesis of one-carbon units for the serine synthesis from glycine), and all combinations of each has been determined. The results were used to devise methods for isolating mutants affected either in the generation of one-carbon units from glycine (via GDC) or subsequent steps in serine biosynthesis. The mutants fell into six complementation groups (gsd1-6 for defects in conversion of glycine to serine). Representatives from three complementation groups were also unable to grow on glycine as sole nitrogen source (gsd1-3). Assays of the rate of glycine uptake and decarboxylation have provided insights into the nature of the mutations.
Full Text
The Full Text of this article is available as a PDF (5.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ballarin-Denti A., Den Hollander J. A., Sanders D., Slayman C. W., Slayman C. L. Kinetics and pH-dependence of glycine-proton symport in Saccharomyces cerevisiae. Biochim Biophys Acta. 1984 Nov 21;778(1):1–16. doi: 10.1016/0005-2736(84)90442-5. [DOI] [PubMed] [Google Scholar]
- Bogonez E., Satrústegui J., Machado A. Regulation by ammonium of glutamate dehydrogenase (NADP+) from Saccharomyces cerevisiae. J Gen Microbiol. 1985 Jun;131(6):1425–1432. doi: 10.1099/00221287-131-6-1425. [DOI] [PubMed] [Google Scholar]
- Dickinson J. R., Dawes I. W. The catabolism of branched-chain amino acids occurs via 2-oxoacid dehydrogenase in Saccharomyces cerevisiae. J Gen Microbiol. 1992 Oct;138(10):2029–2033. doi: 10.1099/00221287-138-10-2029. [DOI] [PubMed] [Google Scholar]
- Dickinson J. R., Roy D. J., Dawes I. W. A mutation affecting lipoamide dehydrogenase, pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase activities in Saccharomyces cerevisiae. Mol Gen Genet. 1986 Jul;204(1):103–107. doi: 10.1007/BF00330195. [DOI] [PubMed] [Google Scholar]
- Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guarente L., Mason T. Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site. Cell. 1983 Apr;32(4):1279–1286. doi: 10.1016/0092-8674(83)90309-4. [DOI] [PubMed] [Google Scholar]
- Horne D. W., Patterson D., Cook R. J. Effect of nitrous oxide inactivation of vitamin B12-dependent methionine synthetase on the subcellular distribution of folate coenzymes in rat liver. Arch Biochem Biophys. 1989 May 1;270(2):729–733. doi: 10.1016/0003-9861(89)90556-0. [DOI] [PubMed] [Google Scholar]
- Kochi H., Kikuchi G. Reactions of glycine synthesis and glycine cleavage catalyzed by extracts of Arthrobacter globiformis grown on glycine. Arch Biochem Biophys. 1969 Jul;132(2):359–369. doi: 10.1016/0003-9861(69)90377-4. [DOI] [PubMed] [Google Scholar]
- McKenzie K. Q., Jones E. W. Mutants of formyltetrahydrofolate interconversion pathway of Saccharomyces cerevisiae. Genetics. 1977 May;86(1):85–102. doi: 10.1093/genetics/86.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNeil J. B., McIntosh E. M., Taylor B. V., Zhang F. R., Tang S., Bognar A. L. Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine. J Biol Chem. 1994 Mar 25;269(12):9155–9165. [PubMed] [Google Scholar]
- Melcher K., Entian K. D. Genetic analysis of serine biosynthesis and glucose repression in yeast. Curr Genet. 1992 Apr;21(4-5):295–300. doi: 10.1007/BF00351686. [DOI] [PubMed] [Google Scholar]
- Nasmyth K. A., Reed S. I. Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2119–2123. doi: 10.1073/pnas.77.4.2119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neuburger M., Jourdain A., Douce R. Isolation of H-protein loaded with methylamine as a transient species in glycine decarboxylase reactions. Biochem J. 1991 Sep 15;278(Pt 3):765–769. doi: 10.1042/bj2780765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogur M., Liu T. N., Cheung I., Paulavicius I., Wales W., Mehnert D., Blaise D. "Active" one-carbon generation in Saccharomyces cerevisiae. J Bacteriol. 1977 Feb;129(2):926–933. doi: 10.1128/jb.129.2.926-933.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plamann M. D., Rapp W. D., Stauffer G. V. Escherichia coli K12 mutants defective in the glycine cleavage enzyme system. Mol Gen Genet. 1983;192(1-2):15–20. doi: 10.1007/BF00327641. [DOI] [PubMed] [Google Scholar]
- Rogers W. J., Jordan B. R., Rawsthorne S., Tobin A. K. Changes to the Stoichiometry of Glycine Decarboxylase Subunits during Wheat (Triticum aestivum L.) and Pea (Pisum sativum L.) Leaf Development. Plant Physiol. 1991 Jul;96(3):952–956. doi: 10.1104/pp.96.3.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabor H., Tabor C. W., Hafner E. W. Convenient method for detecting 14CO2 in multiple samples: application to rapid screening for mutants. J Bacteriol. 1976 Oct;128(1):485–486. doi: 10.1128/jb.128.1.485-486.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ulane R., Ogur M. Genetic and physiological control of serine and glycine biosynthesis in Saccharomyces. J Bacteriol. 1972 Jan;109(1):34–43. doi: 10.1128/jb.109.1.34-43.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker J. L., Oliver D. J. Light-induced increases in the glycine decarboxylase multienzyme complex from pea leaf mitochondria. Arch Biochem Biophys. 1986 Aug 1;248(2):626–638. doi: 10.1016/0003-9861(86)90517-5. [DOI] [PubMed] [Google Scholar]
- Ward A. C. Single-step purification of shuttle vectors from yeast for high frequency back-transformation into E. coli. Nucleic Acids Res. 1990 Sep 11;18(17):5319–5319. doi: 10.1093/nar/18.17.5319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zelikson R., Luzzati M. Mitochondrial and cytoplasmic distribution in Saccharmoyces cerevisiae of enzymes involved in folate-coenzyme-mediated one-carbon-group transfer. A genetic and biochemical study of the enzyme deficiencies in mutants tmp3 and ade3. Eur J Biochem. 1977 Sep 15;79(1):285–292. doi: 10.1111/j.1432-1033.1977.tb11808.x. [DOI] [PubMed] [Google Scholar]