Skip to main content
Genetics logoLink to Genetics
. 1995 Sep;141(1):191–202. doi: 10.1093/genetics/141.1.191

Developmental Analysis of the Ovarian Tumor Gene during Drosophila Oogenesis

C Rodesch 1, P K Geyer 1, J S Patton 1, E Bae 1, R N Nagoshi 1
PMCID: PMC1206717  PMID: 8536967

Abstract

Severe alleles of the ovarian tumor (otu) and ovo genes result in female sterility in Drosophila melanogaster, producing adult ovaries that completely lack egg chambers. We examined the developmental stage in which the agametic phenotype first becomes apparent. Germ cell development in embryos was studied using a strategy that allowed simultaneous labeling of pole cells with the determination of embryonic genotype. We found that ovo(-) or otu(-) XX embryonic germ cells were indistinguishable in number and morphology from those present in wild-type siblings. The effects of the mutations were not consistently manifested in the female germline until pupariation, and there was no evidence that either gene was required for germ cell viability at earlier stages of development. The requirement for otu function in the pupal and adult ovary is supported by temperature-shift experiments using a heat-inducible otu gene construct. We demonstrate that otu activity limited to prepupal stages was not sufficient to support oogenesis, while induction during the pupal and adult periods caused suppression of the otu mutant phenotype.

Full Text

The Full Text of this article is available as a PDF (10.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bae E., Cook K. R., Geyer P. K., Nagoshi R. N. Molecular characterization of ovarian tumors in Drosophila. Mech Dev. 1994 Aug;47(2):151–164. doi: 10.1016/0925-4773(94)90087-6. [DOI] [PubMed] [Google Scholar]
  2. Bishop D. L., King R. C. An ultrastructural study of ovarian development in the otu7 mutant of Drosophila melanogaster. J Cell Sci. 1984 Apr;67:87–119. doi: 10.1242/jcs.67.1.87. [DOI] [PubMed] [Google Scholar]
  3. Champe M. A., Laird C. D. Nucleotide sequence of a cDNA from the putative ovarian tumor locus of Drosophila melanogaster. Nucleic Acids Res. 1989 Apr 25;17(8):3304–3304. doi: 10.1093/nar/17.8.3304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Comer A. R., Searles L. L., Kalfayan L. J. Identification of a genomic DNA fragment containing the Drosophila melanogaster ovarian tumor gene (otu) and localization of regions governing its expression. Gene. 1992 Sep 10;118(2):171–179. doi: 10.1016/0378-1119(92)90186-s. [DOI] [PubMed] [Google Scholar]
  5. Engstrom L., Caulton J. H., Underwood E. M., Mahowald A. P. Developmental lesions in the Agametic mutant of Drosophila melanogaster. Dev Biol. 1982 May;91(1):163–170. doi: 10.1016/0012-1606(82)90019-7. [DOI] [PubMed] [Google Scholar]
  6. Garfinkel M. D., Lohe A. R., Mahowald A. P. Molecular genetics of the Drosophila melanogaster ovo locus, a gene required for sex determination of germline cells. Genetics. 1992 Apr;130(4):791–803. doi: 10.1093/genetics/130.4.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. King R. C., Mohler D., Riley S. F., Storto P. D., Nicolazzo P. S. Complementation between alleles at the ovarian tumor locus of Drosophila melanogaster. Dev Genet. 1986;7(1):1–20. doi: 10.1002/dvg.1020070102. [DOI] [PubMed] [Google Scholar]
  8. Mével-Ninio M., Mariol M. C., Gans M. Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovo dominant female-sterile mutations: molecular analysis of revertant alleles. EMBO J. 1989 May;8(5):1549–1558. doi: 10.1002/j.1460-2075.1989.tb03539.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Oliver B., Perrimon N., Mahowald A. P. The ovo locus is required for sex-specific germ line maintenance in Drosophila. Genes Dev. 1987 Nov;1(9):913–923. doi: 10.1101/gad.1.9.913. [DOI] [PubMed] [Google Scholar]
  10. Oliver B., Singer J., Laget V., Pennetta G., Pauli D. Function of Drosophila ovo+ in germ-line sex determination depends on X-chromosome number. Development. 1994 Nov;120(11):3185–3195. doi: 10.1242/dev.120.11.3185. [DOI] [PubMed] [Google Scholar]
  11. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  12. Steinmann-Zwicky M. How do germ cells choose their sex? Drosophila as a paradigm. Bioessays. 1992 Aug;14(8):513–518. doi: 10.1002/bies.950140803. [DOI] [PubMed] [Google Scholar]
  13. Thummel C. S., Boulet A. M., Lipshitz H. D. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene. 1988 Dec 30;74(2):445–456. doi: 10.1016/0378-1119(88)90177-1. [DOI] [PubMed] [Google Scholar]
  14. Wei G., Oliver B., Mahowald A. P. Gonadal dysgenesis reveals sexual dimorphism in the embryonic germline of Drosophila. Genetics. 1991 Sep;129(1):203–210. doi: 10.1093/genetics/129.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wei G., Oliver B., Pauli D., Mahowald A. P. Evidence for sex transformation of germline cells in ovarian tumor mutants of Drosophila. Dev Biol. 1994 Jan;161(1):318–320. doi: 10.1006/dbio.1994.1032. [DOI] [PubMed] [Google Scholar]
  16. Wieschaus E., Audit C., Masson M. A clonal analysis of the roles of somatic cells and germ line during oogenesis in Drosophila. Dev Biol. 1981 Nov;88(1):92–103. doi: 10.1016/0012-1606(81)90221-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES