Abstract
A 974-bp region immediately 5' of the esterase 6 gene was sequenced in 17 field derived third chromosome isoallelic lines. Twenty-three polymorphisms were identified, only two in the first 400 bp 5' but 16 in a 325-bp region from -494 to -819 bp. This distribution differs from previously published patterns in Drosophila simulans and D. mauritiana, where the first 800 bp are highly conserved. Fourteen common polymorphisms in the 325-bp region above are all in strong linkage disequilibrium with each other. Moreover, most of the haplotypes defined by the total of 23 polymorphisms fall into two groups that differ as a block at all 14 of these latter sites. Sequence differences between the two groups include some restriction sites that were scored in an earlier study of RFLPs and EST6 enzyme phenotypes among 42 isoallelic lines from the same population. By collating the two studies, we show that one haplotype group yields ~15% lower EST6 enzyme activity in adult males than the other. The promoter haplotypes show only weak disequilibrium with the esterase 6 fast/slow allozyme polymorphism, so it seems unlikely that previously reported latitudinal clines in the allozyme frequencies are due to their hitchhiking along with selection on the promoter difference.
Full Text
The Full Text of this article is available as a PDF (4.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aquadro C. F., Weaver A. L., Schaeffer S. W., Anderson W. W. Molecular evolution of inversions in Drosophila pseudoobscura: the amylase gene region. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):305–309. doi: 10.1073/pnas.88.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballard J. W., Olsen G. J., Faith D. P., Odgers W. A., Rowell D. M., Atkinson P. W. Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science. 1992 Nov 20;258(5086):1345–1348. doi: 10.1126/science.1455227. [DOI] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature. 1993 Oct 7;365(6446):548–550. doi: 10.1038/365548a0. [DOI] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. Evolutionary inferences from DNA variation at the 6-phosphogluconate dehydrogenase locus in natural populations of drosophila: selection and geographic differentiation. Genetics. 1994 Jan;136(1):155–171. doi: 10.1093/genetics/136.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
- Collet C., Nielsen K. M., Russell R. J., Karl M., Oakeshott J. G., Richmond R. C. Molecular analysis of duplicated esterase genes in Drosophila melanogaster. Mol Biol Evol. 1990 Jan;7(1):9–28. doi: 10.1093/oxfordjournals.molbev.a040582. [DOI] [PubMed] [Google Scholar]
- Cooke P. H., Oakeshott J. G. Amino acid polymorphisms for esterase-6 in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1426–1430. doi: 10.1073/pnas.86.4.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooke P. H., Richmond R. C., Oakeshott J. G. High resolution electrophoretic variation at the esterase-6 locus in a natural population of Drosophila melanogaster. Heredity (Edinb) 1987 Oct;59(Pt 2):259–264. doi: 10.1038/hdy.1987.121. [DOI] [PubMed] [Google Scholar]
- Eanes W. F., Kirchner M., Yoon J. Evidence for adaptive evolution of the G6pd gene in the Drosophila melanogaster and Drosophila simulans lineages. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7475–7479. doi: 10.1073/pnas.90.16.7475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Game A. Y., Oakeshott J. G. Associations between restriction site polymorphism and enzyme activity variation for esterase 6 in Drosophila melanogaster. Genetics. 1990 Dec;126(4):1021–1031. doi: 10.1093/genetics/126.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Game A. Y., Oakeshott J. G. Variation in the amount and activity of esterase 6 in a natural population of Drosophila melanogaster. Heredity (Edinb) 1989 Feb;62(Pt 1):27–34. doi: 10.1038/hdy.1989.4. [DOI] [PubMed] [Google Scholar]
- Hale L. R., Singh R. S. A comprehensive study of genic variation in natural populations of Drosophila melanogaster. IV. Mitochondrial DNA variation and the role of history vs. selection in the genetic structure of geographic populations. Genetics. 1991 Sep;129(1):103–117. doi: 10.1093/genetics/129.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Healy M. J., Dumancic M. M., Oakeshott J. G. Biochemical and physiological studies of soluble esterases from Drosophila melanogaster. Biochem Genet. 1991 Aug;29(7-8):365–388. doi: 10.1007/BF00554144. [DOI] [PubMed] [Google Scholar]
- Higuchi R. G., Ochman H. Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Res. 1989 Jul 25;17(14):5865–5865. doi: 10.1093/nar/17.14.5865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeffs P. S., Holmes E. C., Ashburner M. The molecular evolution of the alcohol dehydrogenase and alcohol dehydrogenase-related genes in the Drosophila melanogaster species subgroup. Mol Biol Evol. 1994 Mar;11(2):287–304. doi: 10.1093/oxfordjournals.molbev.a040110. [DOI] [PubMed] [Google Scholar]
- Karotam J., Boyce T. M., Oakeshott J. G. Nucleotide variation at the hypervariable esterase 6 isozyme locus of Drosophila simulans. Mol Biol Evol. 1995 Jan;12(1):113–122. doi: 10.1093/oxfordjournals.molbev.a040180. [DOI] [PubMed] [Google Scholar]
- Karotam J., Delves A. C., Oakeshott J. G. Conservation and change in structural and 5' flanking sequences of esterase 6 in sibling Drosophila species. Genetica. 1993;88(1):11–28. doi: 10.1007/BF02424448. [DOI] [PubMed] [Google Scholar]
- Labate J., Bortoli A., Game A. Y., Cooke P. H., Oakeshott J. G. The number and distribution of esterase 6 alleles in populations of Drosophila melanogaster. Heredity (Edinb) 1989 Oct;63(Pt 2):203–208. doi: 10.1038/hdy.1989.93. [DOI] [PubMed] [Google Scholar]
- Long M., Langley C. H. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science. 1993 Apr 2;260(5104):91–95. doi: 10.1126/science.7682012. [DOI] [PubMed] [Google Scholar]
- Ludwig M. Z., Tamarina N. A., Richmond R. C. Localization of sequences controlling the spatial, temporal, and sex-specific expression of the esterase 6 locus in Drosophila melanogaster adults. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6233–6237. doi: 10.1073/pnas.90.13.6233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
- Procunier W. S., Smith J. J., Richmond R. C. Physical mapping of the Esterase-6 locus of Drosophila melanogaster. Genetica. 1991;84(3):203–208. doi: 10.1007/BF00127248. [DOI] [PubMed] [Google Scholar]