Skip to main content
Genetics logoLink to Genetics
. 1995 Sep;141(1):237–244. doi: 10.1093/genetics/141.1.237

Evolutionary Relationships and Sequence Variation of α-Amylase Variants Encoded by Duplicated Genes in the Amy Locus of Drosophila Melanogaster

N Inomata 1, H Shibata 1, E Okuyama 1, T Yamazaki 1
PMCID: PMC1206721  PMID: 8536971

Abstract

To infer the genealogical relationships of α-amylase electromorphs of Drosophila melanogaster, we determined the nucleotide sequences of a collection of electromorphs sampled throughout the world. On average there were 1.0 amino acid substitutions between identical electromorphs and 3.9 between different electromorphs, respectively. We found that the evolution of AMY(1) through AMY(6) electromorphs occurred by sequential accumulation of single amino acid substitutions each causing one charge difference. The nucleotide diversities at synonymous sites within Amy(1),Amy(2),Amy(3),Amy(4) and Amy(6) were 0.0321, 0.0000, 0.0355, 0.0059 and 0.0030, respectively. We also obtained evidence of genetic exchanges, such as intrachromosomal recombination, interchromosomal recombination or gene conversion, between the two duplicated Amy genes as well as among the alleles.

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benkel B. F., Hickey D. A. The Interaction of Genetic and Environmental Factors in the Control of Amylase Gene Expression in DROSOPHILA MELANOGASTER. Genetics. 1986 Nov;114(3):943–954. doi: 10.1093/genetics/114.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Daïnou O., Cariou M. L., David J. R., Hickey D. Amylase gene duplication: an ancestral trait in the Drosophila melanogaster species subgroup. Heredity (Edinb) 1987 Oct;59(Pt 2):245–251. doi: 10.1038/hdy.1987.119. [DOI] [PubMed] [Google Scholar]
  3. Frischauf A. M., Lehrach H., Poustka A., Murray N. Lambda replacement vectors carrying polylinker sequences. J Mol Biol. 1983 Nov 15;170(4):827–842. doi: 10.1016/s0022-2836(83)80190-9. [DOI] [PubMed] [Google Scholar]
  4. Gemmill R. M., Levy J. N., Doane W. W. Molecular cloning of alpha-amylase genes from Drosophila melanogaster. I. Clone isolation by use of a mouse probe. Genetics. 1985 Jun;110(2):299–312. doi: 10.1093/genetics/110.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gemmill R. M., Schwartz P. E., Doane W. W. Structural organization of the Amy locus in seven strains of Drosophila melanogaster. Nucleic Acids Res. 1986 Jul 11;14(13):5337–5352. doi: 10.1093/nar/14.13.5337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hickey D. A., Bally-Cuif L., Abukashawa S., Payant V., Benkel B. F. Concerted evolution of duplicated protein-coding genes in Drosophila. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1611–1615. doi: 10.1073/pnas.88.5.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kreitman M., Hudson R. R. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics. 1991 Mar;127(3):565–582. doi: 10.1093/genetics/127.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. doi: 10.1038/304412a0. [DOI] [PubMed] [Google Scholar]
  9. Langley C. H., Shrimpton A. E., Yamazaki T., Miyashita N., Matsuo Y., Aquadro C. F. Naturally occurring variation in the restriction map of the amy region of Drosophila melanogaster. Genetics. 1988 Jul;119(3):619–629. doi: 10.1093/genetics/119.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leigh Brown A. J., Ish-Horowicz D. Evolution of the 87A and 87C heat-shock loci in Drosophila. Nature. 1981 Apr 23;290(5808):677–682. doi: 10.1038/290677a0. [DOI] [PubMed] [Google Scholar]
  11. Levy J. N., Gemmill R. M., Doane W. W. Molecular cloning of alpha-amylase genes from Drosophila melanogaster. II. Clone organization and verification. Genetics. 1985 Jun;110(2):313–324. doi: 10.1093/genetics/110.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Matsuo Y., Yamazaki T. Genetic Analysis of Natural Populations of DROSOPHILA MELANOGASTER in Japan. IV. Natural Selection on the Inducibility, but Not on the Structural Genes, of Amylase Loci. Genetics. 1984 Dec;108(4):879–896. doi: 10.1093/genetics/108.4.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Matsuo Y., Yamazaki T. Nucleotide variation and divergence in the histone multigene family in Drosophila melanogaster. Genetics. 1989 May;122(1):87–97. doi: 10.1093/genetics/122.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nagylaki T. Evolution of multigene families under interchromosomal gene conversion. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3796–3800. doi: 10.1073/pnas.81.12.3796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nakanishi S., Inoue A., Kita T., Nakamura M., Chang A. C., Cohen S. N., Numa S. Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature. 1979 Mar 29;278(5703):423–427. doi: 10.1038/278423a0. [DOI] [PubMed] [Google Scholar]
  16. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nei M., Tajima F. DNA polymorphism detectable by restriction endonucleases. Genetics. 1981 Jan;97(1):145–163. doi: 10.1093/genetics/97.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ohta T. On the evolution of multigene families. Theor Popul Biol. 1983 Apr;23(2):216–240. doi: 10.1016/0040-5809(83)90015-1. [DOI] [PubMed] [Google Scholar]
  19. Payant V., Abukashawa S., Sasseville M., Benkel B. F., Hickey D. A., David J. Evolutionary conservation of the chromosomal configuration and regulation of amylase genes among eight species of the Drosophila melanogaster species subgroup. Mol Biol Evol. 1988 Sep;5(5):560–567. doi: 10.1093/oxfordjournals.molbev.a040509. [DOI] [PubMed] [Google Scholar]
  20. Powell J. R., Andjelković M. Population genetics of Drosophila amylase. IV. Selection in laboratory populations maintained on different carbohydrates. Genetics. 1983 Apr;103(4):675–689. doi: 10.1093/genetics/103.4.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  22. Sawyer S. Statistical tests for detecting gene conversion. Mol Biol Evol. 1989 Sep;6(5):526–538. doi: 10.1093/oxfordjournals.molbev.a040567. [DOI] [PubMed] [Google Scholar]
  23. Shibata H., Yamazaki T. Molecular evolution of the duplicated Amy locus in the Drosophila melanogaster species subgroup: concerted evolution only in the coding region and an excess of nonsynonymous substitutions in speciation. Genetics. 1995 Sep;141(1):223–236. doi: 10.1093/genetics/141.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Singh R. S., Hickey D. A., David J. Genetic Differentiation between Geographically Distant Populations of DROSOPHILA MELANOGASTER. Genetics. 1982 Jun;101(2):235–256. doi: 10.1093/genetics/101.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wahli W., Dawid I. B., Ryffel G. U., Weber R. Vitellogenesis and the vitellogenin gene family. Science. 1981 Apr 17;212(4492):298–304. doi: 10.1126/science.7209528. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES