Skip to main content
Genetics logoLink to Genetics
. 1995 Sep;141(1):255–262. doi: 10.1093/genetics/141.1.255

Molecular Basis of Polymorphism at the Esterase-5b Locus in Drosophila Pseudoobscura

M Veuille 1, L M King 1
PMCID: PMC1206724  PMID: 8536974

Abstract

Sequence variation was studied in a 2.2-kb region encompassing the esterase-5B locus in Drosophila pseudoobscura from two California populations. In these populations, two common electrophoretic classes and many less frequent variants occur, and it was formerly shown by KEITH (1983) that allele frequencies differed from random distribution under an infinite allele model. Nucleotide polymorphisms were determined in 16 sequences representing 14 electrophoretic classes. There was no significant sequence differentiation between populations, and both synonymous and nonsynonymous polymorphisms are distributed homogeneously along the sequence. The data show that the two major electrophoretic classes are heterogeneous at the amino acid level with no diagnostic amino acid(s) distinguishing them. At the nucleotide level, members of one major class are more similar to members of other electrophoretic classes than they are to each other. It appears that random combinations of the neutral amino acid polymorphisms and other undefined physical properties of the proteins generate the different electrophoretic classes and maintain considerable variation at Est-5B.

Full Text

The Full Text of this article is available as a PDF (885.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2241–2245. doi: 10.1093/nar/19.suppl.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brady J. P., Richmond R. C., Oakeshott J. G. Cloning of the esterase-5 locus from Drosophila pseudoobscura and comparison with its homologue in D. melanogaster. Mol Biol Evol. 1990 Nov;7(6):525–546. doi: 10.1093/oxfordjournals.molbev.a040624. [DOI] [PubMed] [Google Scholar]
  3. Ewens W. J. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972 Mar;3(1):87–112. doi: 10.1016/0040-5809(72)90035-4. [DOI] [PubMed] [Google Scholar]
  4. Higuchi R. G., Ochman H. Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Res. 1989 Jul 25;17(14):5865–5865. doi: 10.1093/nar/17.14.5865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hudson R. R., Bailey K., Skarecky D., Kwiatowski J., Ayala F. J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. doi: 10.1093/genetics/136.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Keith T. P. Frequency Distribution of Esterase-5 Alleles in Two Populations of DROSOPHILA PSEUDOOBSCURA. Genetics. 1983 Sep;105(1):135–155. doi: 10.1093/genetics/105.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kreitman M., Hudson R. R. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics. 1991 Mar;127(3):565–582. doi: 10.1093/genetics/127.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. doi: 10.1038/304412a0. [DOI] [PubMed] [Google Scholar]
  9. Lewontin R. C. Population genetics. Annu Rev Genet. 1985;19:81–102. doi: 10.1146/annurev.ge.19.120185.000501. [DOI] [PubMed] [Google Scholar]
  10. Lewontin R. C. Population genetics. Annu Rev Genet. 1973;7:1–17. doi: 10.1146/annurev.ge.07.120173.000245. [DOI] [PubMed] [Google Scholar]
  11. Moriyama E. N., Hartl D. L. Codon usage bias and base composition of nuclear genes in Drosophila. Genetics. 1993 Jul;134(3):847–858. doi: 10.1093/genetics/134.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schaeffer S. W., Miller E. L. Nucleotide sequence analysis of Adh genes estimates the time of geographic isolation of the Bogota population of Drosophila pseudoobscura. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6097–6101. doi: 10.1073/pnas.88.14.6097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Watterson G. A. Heterosis or neutrality? Genetics. 1977 Apr;85(4):789–814. doi: 10.1093/genetics/85.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES