Skip to main content
Genetics logoLink to Genetics
. 1995 Oct;141(2):785–795. doi: 10.1093/genetics/141.2.785

The Molecular Evolution of the Small Heat-Shock Proteins in Plants

E R Waters 1
PMCID: PMC1206773  PMID: 8647410

Abstract

The small heat-shock proteins have undergone a tremendous diversification in plants; whereas only a single small heat-shock protein is found in fungi and many animals, over 20 different small heat-shock proteins are found in higher plants. The small heat-shock proteins in plants have diversified in both sequence and cellular localization and are encoded by at least five gene families. In this study, 44 small heat-shock protein DNA and amino acid sequences were examined, using both phylogenetic analysis and analysis of nucleotide substitution patterns to elucidate the evolutionary history of the small heat-shock proteins. The phylogenetic relationships of the small heat-shock proteins, estimated using parsimony and distance methods, reveal that gene duplication, sequence divergence and gene conversion have all played a role in the evolution of the small heat-shock proteins. Analysis of nonsynonymous substitutions and conservative and radical replacement substitutions (in relation to hydrophobicity) indicates that the small heat-shock protein gene families are evolving at different rates. This suggests that the small heat-shock proteins may have diversified in function as well as in sequence and cellular localization.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson B. G., Raizada M., Bouchard R. A., Frappier R. H., Walden D. B. The independent stage-specific expression of the 18-kDa heat shock protein genes during microsporogenesis in Zea mays L. Dev Genet. 1993;14(1):15–26. doi: 10.1002/dvg.1020140104. [DOI] [PubMed] [Google Scholar]
  2. Becker J., Craig E. A. Heat-shock proteins as molecular chaperones. Eur J Biochem. 1994 Jan 15;219(1-2):11–23. doi: 10.1007/978-3-642-79502-2_2. [DOI] [PubMed] [Google Scholar]
  3. Beckmann R. P., Mizzen L. E., Welch W. J. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science. 1990 May 18;248(4957):850–854. doi: 10.1126/science.2188360. [DOI] [PubMed] [Google Scholar]
  4. Boorstein W. R., Ziegelhoffer T., Craig E. A. Molecular evolution of the HSP70 multigene family. J Mol Evol. 1994 Jan;38(1):1–17. doi: 10.1007/BF00175490. [DOI] [PubMed] [Google Scholar]
  5. Craig E. A., Weissman J. S., Horwich A. L. Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell. 1994 Aug 12;78(3):365–372. doi: 10.1016/0092-8674(94)90416-2. [DOI] [PubMed] [Google Scholar]
  6. Eernisse D. J. DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis of molecules. Comput Appl Biosci. 1992 Apr;8(2):177–184. doi: 10.1093/bioinformatics/8.2.177. [DOI] [PubMed] [Google Scholar]
  7. Fitch D. H., Bailey W. J., Tagle D. A., Goodman M., Sieu L., Slightom J. L. Duplication of the gamma-globin gene mediated by L1 long interspersed repetitive elements in an early ancestor of simian primates. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7396–7400. doi: 10.1073/pnas.88.16.7396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  9. Goodman M., Czelusniak J., Koop B. F., Tagle D. A., Slightom J. L. Globins: a case study in molecular phylogeny. Cold Spring Harb Symp Quant Biol. 1987;52:875–890. doi: 10.1101/sqb.1987.052.01.096. [DOI] [PubMed] [Google Scholar]
  10. Hughes A. L. Contrasting evolutionary rates in the duplicate chaperonin genes of Mycobacterium tuberculosis and M. leprae. Mol Biol Evol. 1993 Nov;10(6):1343–1359. doi: 10.1093/oxfordjournals.molbev.a040064. [DOI] [PubMed] [Google Scholar]
  11. Hughes A. L. Nonlinear relationships among evolutionary rates identify regions of functional divergence in heat-shock protein 70 genes. Mol Biol Evol. 1993 Jan;10(1):243–255. doi: 10.1093/oxfordjournals.molbev.a039997. [DOI] [PubMed] [Google Scholar]
  12. Jakob U., Buchner J. Assisting spontaneity: the role of Hsp90 and small Hsps as molecular chaperones. Trends Biochem Sci. 1994 May;19(5):205–211. doi: 10.1016/0968-0004(94)90023-x. [DOI] [PubMed] [Google Scholar]
  13. Jakob U., Gaestel M., Engel K., Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993 Jan 25;268(3):1517–1520. [PubMed] [Google Scholar]
  14. Karlin S., Brendel V., Bucher P. Significant similarity and dissimilarity in homologous proteins. Mol Biol Evol. 1992 Jan;9(1):152–167. doi: 10.1093/oxfordjournals.molbev.a040704. [DOI] [PubMed] [Google Scholar]
  15. Knack G., Liu Z., Kloppstech K. Low molecular mass heat-shock proteins of a light-resistant photoautotrophic cell culture. Eur J Cell Biol. 1992 Oct;59(1):166–175. [PubMed] [Google Scholar]
  16. Kobayashi T., Kobayashi E., Sato S., Hotta Y., Miyajima N., Tanaka A., Tabata S. Characterization of cDNAs induced in meiotic prophase in lily microsporocytes. DNA Res. 1994;1(1):15–26. doi: 10.1093/dnares/1.1.15. [DOI] [PubMed] [Google Scholar]
  17. Krishna P., Felsheim R. F., Larkin J. C., Das A. Structure and Light-Induced Expression of a Small Heat-Shock Protein Gene of Pharbitis nil. Plant Physiol. 1992 Dec;100(4):1772–1779. doi: 10.1104/pp.100.4.1772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee G. J., Pokala N., Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem. 1995 May 5;270(18):10432–10438. doi: 10.1074/jbc.270.18.10432. [DOI] [PubMed] [Google Scholar]
  19. Lenne C., Douce R. A Low Molecular Mass Heat-Shock Protein Is Localized to Higher Plant Mitochondria. Plant Physiol. 1994 Aug;105(4):1255–1261. doi: 10.1104/pp.105.4.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li W. H. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol. 1993 Jan;36(1):96–99. doi: 10.1007/BF02407308. [DOI] [PubMed] [Google Scholar]
  21. Lindquist S., Craig E. A. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. [DOI] [PubMed] [Google Scholar]
  22. Meagher R. B., Berry-Lowe S., Rice K. Molecular evolution of the small subunit of ribulose bisphosphate carboxylase: nucleotide substitution and gene conversion. Genetics. 1989 Dec;123(4):845–863. doi: 10.1093/genetics/123.4.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nagylaki T. Evolution of multigene families under interchromosomal gene conversion. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3796–3800. doi: 10.1073/pnas.81.12.3796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ohta T. Evolution by gene duplication and compensatory advantageous mutations. Genetics. 1988 Nov;120(3):841–847. doi: 10.1093/genetics/120.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ohta T. Multigene families and the evolution of complexity. J Mol Evol. 1991 Jul;33(1):34–41. doi: 10.1007/BF02100193. [DOI] [PubMed] [Google Scholar]
  26. Ohta T. Time for acquiring a new gene by duplication. Proc Natl Acad Sci U S A. 1988 May;85(10):3509–3512. doi: 10.1073/pnas.85.10.3509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Plesofsky-Vig N., Vig J., Brambl R. Phylogeny of the alpha-crystallin-related heat-shock proteins. J Mol Evol. 1992 Dec;35(6):537–545. doi: 10.1007/BF00160214. [DOI] [PubMed] [Google Scholar]
  28. Rensing S. A., Maier U. G. Phylogenetic analysis of the stress-70 protein family. J Mol Evol. 1994 Jul;39(1):80–86. doi: 10.1007/BF00178252. [DOI] [PubMed] [Google Scholar]
  29. Schneider H. C., Berthold J., Bauer M. F., Dietmeier K., Guiard B., Brunner M., Neupert W. Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature. 1994 Oct 27;371(6500):768–774. doi: 10.1038/371768a0. [DOI] [PubMed] [Google Scholar]
  30. Walsh J. B. How often do duplicated genes evolve new functions? Genetics. 1995 Jan;139(1):421–428. doi: 10.1093/genetics/139.1.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Walsh J. B. Sequence-dependent gene conversion: can duplicated genes diverge fast enough to escape conversion? Genetics. 1987 Nov;117(3):543–557. doi: 10.1093/genetics/117.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wu C. I., Li W. H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. doi: 10.1073/pnas.82.6.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. de Jong W. W., Leunissen J. A., Voorter C. E. Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol. 1993 Jan;10(1):103–126. doi: 10.1093/oxfordjournals.molbev.a039992. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES