Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 Jun;95(3):767–774. doi: 10.1042/bj0950767

Some properties of fructose 1,6-diphosphatase of rat liver and their relation to the control gluconeogenesis

A H Underwood 1, E A Newsholme 1
PMCID: PMC1206804  PMID: 14342513

Abstract

1. Fructose 1,6-diphosphatase has been purified tenfold from rat liver. The final preparation was not contaminated by either glucose 6-phosphatase or phosphofructokinase. The properties of the enzyme have been investigated in an attempt to define factors that could be of revelance to metabolic control of fructose 1,6-diphosphatase activity. 2. The metal ions Fe2+, Fe3+ and Zn2+ inhibited the activity of fructose 1,6-diphosphatase even in the presence of an excess of mercaptoethanol; other metal ions tested had no effect. The inhibition produced by Zn2+ was reversed by EDTA, but that produced by either Fe2+ or Fe3+ was not reversible. 4. The enzyme has a very low Km for fructose 1,6-diphosphate (2·0μm). Concentrations of fructose 1,6-diphosphate above 75μm inhibited the activity; however, even at very high fructose 1,6-diphosphate concentrations only 70% inhibition was obtained. 5. The activity was also inhibited by low concentrations of AMP, which lowered Vmax. and increased Km for fructose 1,6-diphosphate. Evidence is presented that suggests that AMP can be defined as an allosteric inhibitor of fructose 1,6-diphosphatase. 6. The inhibitions by both fructose 1,6-diphosphate and AMP were extremely specific. Also, the degree of inhibition was not affected by the presence of intermediates of glycolysis, of the tricarboxylic acid cycle, of amino acid metabolism or of fatty acid metabolism. 7. It is suggested that the intracellular concentrations of AMP and fructose 1,6-diphosphate could be of significance in controlling the activity of fructose 1,6-diphosphatase in the liver cell. The possible relationship between these intermediates and the control of gluconeogenesis is discussed.

Full text

PDF
767

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DALZIEL K. Kinetic studies of liver alcohol dehydrogenase. Biochem J. 1962 Aug;84:244–254. doi: 10.1042/bj0840244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DALZIEL K. Some observations on the preparation and properties of dihydronicotinamide-adenine dinucleotide. Biochem J. 1962 Aug;84:240–244. doi: 10.1042/bj0840240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAVIDSON W. D., MCGILVERY R. W., MOKRASCH L. C. The response to glucogenic stress of fructose-1, 6-diphosphatase in rabbit liver. J Biol Chem. 1956 Sep;222(1):179–184. [PubMed] [Google Scholar]
  4. EGGLESTON L. V., HEMS R. Separation of adenosine phosphates by paper chromotography and the equilibrium constant of the myokinase system. Biochem J. 1952 Sep;52(1):156–160. doi: 10.1042/bj0520156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KREBS H. THE CROONIAN LECTURE, 1963. GLUCONEOGENESIS. Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:545–564. doi: 10.1098/rspb.1964.0019. [DOI] [PubMed] [Google Scholar]
  6. Krebs H. A., Eggleston L. V. Metabolism of acetoacetate in animal tissues. 1. Biochem J. 1945;39(5):408–419. [PMC free article] [PubMed] [Google Scholar]
  7. Luppis B., Traniello S., Wood W. A., Pontremoli S. Evidence for two forms of fructose diphosphatase. Biochem Biophys Res Commun. 1964 Apr 22;15(5):458–463. doi: 10.1016/0006-291x(64)90486-3. [DOI] [PubMed] [Google Scholar]
  8. MONOD J., CHANGEUX J. P., JACOB F. Allosteric proteins and cellular control systems. J Mol Biol. 1963 Apr;6:306–329. doi: 10.1016/s0022-2836(63)80091-1. [DOI] [PubMed] [Google Scholar]
  9. NEWSHOLME E. A., RANDLE P. J. Regulation of glucose uptake by muscle. 5. Effects of anoxia, insulin, adrenaline and prolonged starving on concentrations of hexose phosphates in isolated rat diaphragm and perfused isolated rat heart. Biochem J. 1961 Sep;80:655–662. doi: 10.1042/bj0800655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. UNDERWOOD A. H., NEWSHOLME E. A. PROPERTIES OF PHOSPHOFRUCTOKINASE FROM RAT LIVER AND THEIR RELATION TO THE CONTROL OF GLYCOLYSIS AND GLUCONEOGENESIS. Biochem J. 1965 Jun;95:868–875. doi: 10.1042/bj0950868. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES