Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 Jun;95(3):780–787. doi: 10.1042/bj0950780

Metabolism of polycyclic compounds. The metabolism of 7,12-dimethylbenz[a]anthracene by rat-liver homogenates

E Boyland 1, P Sims 1
PMCID: PMC1206806  PMID: 14342515

Abstract

1. The main products of the metabolism of 7,12-dimethylbenz[a]anthracene by rat-liver homogenates are the isomeric monohydroxymethyl derivatives. The syntheses of these compounds are described. 2. Two phenolic products and two dihydrodihydroxy compounds were formed, but none of these appeared to have been formed by hydroxylation at the `K region'. There was little evidence for the formation of a glutathione conjugate of the hydrocarbon. 3. The monohydroxymethyl derivatives are products of the hydroxylation of the hydrocarbon in the ascorbic acid–Fe2+–oxygen model hydroxylating system.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Booth J., Boyland E., Sims P. An enzyme from rat liver catalysing conjugations with glutathione. Biochem J. 1961 Jun;79(3):516–524. doi: 10.1042/bj0790516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyland E., Kumura M., Sims P. Metabolism of polycyclic compounds. 26. The hydroxylation of some aromatic hydrocarbons by the ascorbic acid model hydroxylating system and by rat-liver microsomes. Biochem J. 1964 Sep;92(3):631–638. doi: 10.1042/bj0920631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyland E., Sims P. Metabolism of polycyclic compounds. 24. The metabolism of benz[alpha]anthracene. Biochem J. 1964 Jun;91(3):493–506. doi: 10.1042/bj0910493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GILLETTE J. R. Side chain oxidation of alkyl substituted ring compounds. I. Enzymatic oxidation of p-nitrotoluene. J Biol Chem. 1959 Jan;234(1):139–143. [PubMed] [Google Scholar]
  5. Sims P. Metabolism of polycyclic compounds. 25. The metabolism of anthracene and some related compounds in rats. Biochem J. 1964 Sep;92(3):621–631. doi: 10.1042/bj0920621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. UDENFRIEND S., CLARK C. T., AXELROD J., BRODIE B. B. Ascorbic acid in aromatic hydroxylation. I. A model system for aromatic hydroxylation. J Biol Chem. 1954 Jun;208(2):731–739. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES