Skip to main content
Genetics logoLink to Genetics
. 1995 Nov;141(3):1007–1014. doi: 10.1093/genetics/141.3.1007

Host Movement and the Genetic Structure of Populations of Parasitic Nematodes

M S Blouin 1, C A Yowell 1, C H Courtney 1, J B Dame 1
PMCID: PMC1206824  PMID: 8582607

Abstract

Mitochondrial DNA (mtDNA) sequence data were used to compare the population genetic structures of five species of parasitic nematodes from three different hosts: Ostertagia ostertagi and Haemonchus placei from cattle, H. contortus and Teladorsagia circumcincta from sheep, and Mazamastrongylus odocoilei from white-tailed deer. The parasites of sheep and cattle showed a pattern consistent with high gene flow among populations. The parasite of deer showed a pattern of substantial population subdivision and isolation by distance. It appears that host movement is an important determinant of population genetic structure in these nematodes. High gene flow in the parasites of livestock also indicates great opportunity for the spread of rare alleles that confer resistance to anthelmintic drugs. All species, including the parasite of deer, had unusually high within-population diversities (averages of 0.019-0.027 substitutions per site between pairs of individuals from the same population). Large effective population sizes (Ne), perhaps in combination with rapid mtDNA evolution, appear to be the most likely explanation for these high within-population diversities.

Full Text

The Full Text of this article is available as a PDF (714.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avise J. C., Giblin-Davidson C., Laerm J., Patton J. C., Lansman R. A. Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher, Geomys pinetis. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6694–6698. doi: 10.1073/pnas.76.12.6694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beech R. N., Prichard R. K., Scott M. E. Genetic variability of the beta-tubulin genes in benzimidazole-susceptible and -resistant strains of Haemonchus contortus. Genetics. 1994 Sep;138(1):103–110. doi: 10.1093/genetics/138.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bermingham E., Avise J. C. Molecular zoogeography of freshwater fishes in the southeastern United States. Genetics. 1986 Aug;113(4):939–965. doi: 10.1093/genetics/113.4.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bjørn H. Workshop summary: anthelmintic resistance. Vet Parasitol. 1994 Aug;54(1-3):321–325. doi: 10.1016/0304-4017(94)90106-6. [DOI] [PubMed] [Google Scholar]
  5. Craig T. M. Anthelmintic resistance. Vet Parasitol. 1993 Feb;46(1-4):121–131. doi: 10.1016/0304-4017(93)90053-p. [DOI] [PubMed] [Google Scholar]
  6. Hugall A., Moritz C., Stanton J., Wolstenholme D. R. Low, but strongly structured mitochondrial DNA diversity in root knot nematodes (Meloidogyne). Genetics. 1994 Mar;136(3):903–912. doi: 10.1093/genetics/136.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lymbery A. J., Thompson R. C., Hobbs R. P. Genetic diversity and genetic differentiation in Echinococcus granulosus (Batsch, 1786) from domestic and sylvatic hosts on the mainland of Australia. Parasitology. 1990 Oct;101(Pt 2):283–289. doi: 10.1017/s0031182000063344. [DOI] [PubMed] [Google Scholar]
  8. Lynch M., Crease T. J. The analysis of population survey data on DNA sequence variation. Mol Biol Evol. 1990 Jul;7(4):377–394. doi: 10.1093/oxfordjournals.molbev.a040607. [DOI] [PubMed] [Google Scholar]
  9. Nadler S. A. Microevolution and the genetic structure of parasite populations. J Parasitol. 1995 Jun;81(3):395–403. [PubMed] [Google Scholar]
  10. Nadler S. A. Molecular approaches to studying helminth population genetics and phylogeny. Int J Parasitol. 1990 Feb;20(1):11–29. doi: 10.1016/0020-7519(90)90168-m. [DOI] [PubMed] [Google Scholar]
  11. Nascetti G., Cianchi R., Mattiucci S., D'Amelio S., Orecchia P., Paggi L., Brattey J., Berland B., Smith J. W., Bullini L. Three sibling species within Contracaecum osculatum (Nematoda, Ascaridida, Ascaridoidea) from the Atlantic Arctic-Boreal region: reproductive isolation and host preferences. Int J Parasitol. 1993 Feb;23(1):105–120. doi: 10.1016/0020-7519(93)90103-6. [DOI] [PubMed] [Google Scholar]
  12. Okimoto R., Macfarlane J. L., Wolstenholme D. R. The mitochondrial ribosomal RNA genes of the nematodes Caenorhabditis elegans and Ascaris suum: consensus secondary-structure models and conserved nucleotide sets for phylogenetic analysis. J Mol Evol. 1994 Dec;39(6):598–613. doi: 10.1007/BF00160405. [DOI] [PubMed] [Google Scholar]
  13. Raymond M., Callaghan A., Fort P., Pasteur N. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature. 1991 Mar 14;350(6314):151–153. doi: 10.1038/350151a0. [DOI] [PubMed] [Google Scholar]
  14. Shoop W. L. Ivermectin resistance. Parasitol Today. 1993 May;9(5):154–159. doi: 10.1016/0169-4758(93)90136-4. [DOI] [PubMed] [Google Scholar]
  15. Thompson R. C., Lymbery A. J. Intraspecific variation in parasites- what is a strain? Parasitol Today. 1990 Nov;6(11):345–348. doi: 10.1016/0169-4758(90)90410-6. [DOI] [PubMed] [Google Scholar]
  16. Varady M., Praslicka J., Corba J., Vesely L. Multiple anthelmintic resistance of nematodes in imported goats. Vet Rec. 1993 Apr 10;132(15):387–388. doi: 10.1136/vr.132.15.387. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES