Skip to main content
Genetics logoLink to Genetics
. 1995 Nov;141(3):1049–1059. doi: 10.1093/genetics/141.3.1049

Molecular and Mutational Analysis of a Gelsolin-Family Member Encoded by the Flightless I Gene of Drosophila Melanogaster

H G de-Couet 1, KSK Fong 1, A G Weeds 1, P J McLaughlin 1, GLG Miklos 1
PMCID: PMC1206829  PMID: 8582612

Abstract

The flightless locus of Drosophila melanogaster has been analyzed at the genetic, molecular, ultrastructural and comparative crystallographic levels. The gene encodes a single transcript encoding a protein consisting of a leucine-rich amino terminal half and a carboxyterminal half with high sequence similarity to gelsolin. We determined the genomic sequence of the flightless landscape, the breakpoints of four chromosomal rearrangements, and the molecular lesions in two lethal and two viable alleles of the gene. The two alleles that lead to flight muscle abnormalities encode mutant proteins exhibiting amino acid replacements within the S1-like domain of their gelsolin-like region. Furthermore, the deduced intronexon structure of the D. melanogaster gene has been compared with that of the Caenorhabditis elegans homologue. Furthermore, the sequence similarities of the flightless protein with gelsolin allow it to be evaluated in the context of the published crystallographic structure of the S1 domain of gelsolin. Amino acids considered essential for the structural integrity of the core are found to be highly conserved in the predicted flightless protein. Some of the residues considered essential for actin and calcium binding in gelsolin S1 and villin V1 are also well conserved. These data are discussed in light of the phenotypic characteristics of the mutants and the putative functions of the protein.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. André E., Brink M., Gerisch G., Isenberg G., Noegel A., Schleicher M., Segall J. E., Wallraff E. A Dictyostelium mutant deficient in severin, an F-actin fragmenting protein, shows normal motility and chemotaxis. J Cell Biol. 1989 Mar;108(3):985–995. doi: 10.1083/jcb.108.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bryan J. Gelsolin has three actin-binding sites. J Cell Biol. 1988 May;106(5):1553–1562. doi: 10.1083/jcb.106.5.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eeken J. C., Sobels F. H., Hyland V., Schalet A. P. Distribution of MR-induced sex-linked recessive lethal mutations in Drosophila melanogaster. Mutat Res. 1985 Jun-Jul;150(1-2):261–275. doi: 10.1016/0027-5107(85)90122-8. [DOI] [PubMed] [Google Scholar]
  4. Finidori J., Friederich E., Kwiatkowski D. J., Louvard D. In vivo analysis of functional domains from villin and gelsolin. J Cell Biol. 1992 Mar;116(5):1145–1155. doi: 10.1083/jcb.116.5.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fyrberg E., Kelly M., Ball E., Fyrberg C., Reedy M. C. Molecular genetics of Drosophila alpha-actinin: mutant alleles disrupt Z disc integrity and muscle insertions. J Cell Biol. 1990 Jun;110(6):1999–2011. doi: 10.1083/jcb.110.6.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Giebing T., Hinssen H., D'Haese J. The complete sequence of a 40-kDa actin-modulating protein from the earthworm Lumbricus terrestris. Eur J Biochem. 1994 Nov 1;225(3):773–779. doi: 10.1111/j.1432-1033.1994.0773b.x. [DOI] [PubMed] [Google Scholar]
  7. Homyk T., Sheppard D. E. Behavioral Mutants of DROSOPHILA MELANOGASTER. I. Isolation and Mapping of Mutations Which Decrease Flight Ability. Genetics. 1977 Sep;87(1):95–104. doi: 10.1093/genetics/87.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Karn J., Brenner S., Barnett L. Protein structural domains in the Caenorhabditis elegans unc-54 myosin heavy chain gene are not separated by introns. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4253–4257. doi: 10.1073/pnas.80.14.4253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keith F. J., Gay N. J. The Drosophila membrane receptor Toll can function to promote cellular adhesion. EMBO J. 1990 Dec;9(13):4299–4306. doi: 10.1002/j.1460-2075.1990.tb07878.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koana T., Hotta Y. Isolation and characterization of flightless mutants in Drosophila melanogaster. J Embryol Exp Morphol. 1978 Jun;45:123–143. [PubMed] [Google Scholar]
  11. Kobe B., Deisenhofer J. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature. 1993 Dec 23;366(6457):751–756. doi: 10.1038/366751a0. [DOI] [PubMed] [Google Scholar]
  12. López J. A. The platelet glycoprotein Ib-IX complex. Blood Coagul Fibrinolysis. 1994 Feb;5(1):97–119. [PubMed] [Google Scholar]
  13. Mahajan-Miklos S., Cooley L. The villin-like protein encoded by the Drosophila quail gene is required for actin bundle assembly during oogenesis. Cell. 1994 Jul 29;78(2):291–301. doi: 10.1016/0092-8674(94)90298-4. [DOI] [PubMed] [Google Scholar]
  14. Markus M. A., Nakayama T., Matsudaira P., Wagner G. Solution structure of villin 14T, a domain conserved among actin-severing proteins. Protein Sci. 1994 Jan;3(1):70–81. doi: 10.1002/pro.5560030110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Matsudaira P., Janmey P. Pieces in the actin-severing protein puzzle. Cell. 1988 Jul 15;54(2):139–140. doi: 10.1016/0092-8674(88)90542-9. [DOI] [PubMed] [Google Scholar]
  16. Maury C. P., Alli K., Baumann M. Finnish hereditary amyloidosis. Amino acid sequence homology between the amyloid fibril protein and human plasma gelsoline. FEBS Lett. 1990 Jan 15;260(1):85–87. doi: 10.1016/0014-5793(90)80072-q. [DOI] [PubMed] [Google Scholar]
  17. McLaughlin P. J., Gooch J. T., Mannherz H. G., Weeds A. G. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature. 1993 Aug 19;364(6439):685–692. doi: 10.1038/364685a0. [DOI] [PubMed] [Google Scholar]
  18. Miklos G. L., De Couet H. G. The mutations previously designated as flightless-I3, flightless-O2 and standby are members of the W-2 lethal complementation group at the base of the X-chromosome of Drosophila melanogaster. J Neurogenet. 1990 Apr;6(3):133–151. doi: 10.3109/01677069009107106. [DOI] [PubMed] [Google Scholar]
  19. Miklos G. L., Kelly L. E., Coombe P. E., Leeds C., Lefevre G. Localization of the genes shaking-B, small optic lobes, sluggish-A, stoned and stress-sensitive-C to a well-defined region on the X-chromosome of Drosophila melanogaster. J Neurogenet. 1987 Jan;4(1):1–19. doi: 10.3109/01677068709102329. [DOI] [PubMed] [Google Scholar]
  20. Miklos G. L., Yamamoto M. T., Davies J., Pirrotta V. Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the beta-heterochromatin of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2051–2055. doi: 10.1073/pnas.85.7.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mishra V. S., Henske E. P., Kwiatkowski D. J., Southwick F. S. The human actin-regulatory protein cap G: gene structure and chromosome location. Genomics. 1994 Oct;23(3):560–565. doi: 10.1006/geno.1994.1543. [DOI] [PubMed] [Google Scholar]
  22. Mount S. M., Burks C., Hertz G., Stormo G. D., White O., Fields C. Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res. 1992 Aug 25;20(16):4255–4262. doi: 10.1093/nar/20.16.4255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Perrimon N., Smouse D., Miklos G. L. Developmental genetics of loci at the base of the X chromosome of Drosophila melanogaster. Genetics. 1989 Feb;121(2):313–331. doi: 10.1093/genetics/121.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Prendergast G. C., Ziff E. B. Mbh 1: a novel gelsolin/severin-related protein which binds actin in vitro and exhibits nuclear localization in vivo. EMBO J. 1991 Apr;10(4):757–766. doi: 10.1002/j.1460-2075.1991.tb08007.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pringault E., Robine S., Louvard D. Structure of the human villin gene. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10811–10815. doi: 10.1073/pnas.88.23.10811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Scheffzek K., Kabsch W., Schlichting I., Pai E. F., Lautwein A., Frech M., Wittinghoffer A., Goody R. S. Crystallization and preliminary X-ray structure analysis of thermally unstable p21(H-ras) guanosine complexes. Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):521–526. doi: 10.1107/S0907444994001253. [DOI] [PubMed] [Google Scholar]
  27. Schneider R., Schweiger M. A novel modular mosaic of cell adhesion motifs in the extracellular domains of the neurogenic trk and trkB tyrosine kinase receptors. Oncogene. 1991 Oct;6(10):1807–1811. [PubMed] [Google Scholar]
  28. Stella M. C., Schauerte H., Straub K. L., Leptin M. Identification of secreted and cytosolic gelsolin in Drosophila. J Cell Biol. 1994 May;125(3):607–616. doi: 10.1083/jcb.125.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stoltzfus A., Spencer D. F., Zuker M., Logsdon J. M., Jr, Doolittle W. F. Testing the exon theory of genes: the evidence from protein structure. Science. 1994 Jul 8;265(5169):202–207. doi: 10.1126/science.8023140. [DOI] [PubMed] [Google Scholar]
  30. Vandekerckhove J. Actin-binding proteins. Curr Opin Cell Biol. 1990 Feb;2(1):41–50. doi: 10.1016/s0955-0674(05)80029-8. [DOI] [PubMed] [Google Scholar]
  31. Waterston R., Martin C., Craxton M., Huynh C., Coulson A., Hillier L., Durbin R., Green P., Shownkeen R., Halloran N. A survey of expressed genes in Caenorhabditis elegans. Nat Genet. 1992 May;1(2):114–123. doi: 10.1038/ng0592-114. [DOI] [PubMed] [Google Scholar]
  32. Way M., Gooch J., Pope B., Weeds A. G. Expression of human plasma gelsolin in Escherichia coli and dissection of actin binding sites by segmental deletion mutagenesis. J Cell Biol. 1989 Aug;109(2):593–605. doi: 10.1083/jcb.109.2.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Way M., Pope B., Gooch J., Hawkins M., Weeds A. G. Identification of a region in segment 1 of gelsolin critical for actin binding. EMBO J. 1990 Dec;9(12):4103–4109. doi: 10.1002/j.1460-2075.1990.tb07632.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Weeds A. G., Gooch J., McLaughlin P., Pope B., Bengtsdotter M., Karlsson R. Identification of the trapped calcium in the gelsolin segment 1-actin complex: implications for the role of calcium in the control of gelsolin activity. FEBS Lett. 1995 Mar 6;360(3):227–230. doi: 10.1016/0014-5793(95)00109-m. [DOI] [PubMed] [Google Scholar]
  35. Weeds A., Maciver S. F-actin capping proteins. Curr Opin Cell Biol. 1993 Feb;5(1):63–69. doi: 10.1016/s0955-0674(05)80009-2. [DOI] [PubMed] [Google Scholar]
  36. Witke W., Sharpe A. H., Hartwig J. H., Azuma T., Stossel T. P., Kwiatkowski D. J. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell. 1995 Apr 7;81(1):41–51. doi: 10.1016/0092-8674(95)90369-0. [DOI] [PubMed] [Google Scholar]
  37. Yu F. X., Zhou D. M., Yin H. L. Chimeric and truncated gCap39 elucidate the requirements for actin filament severing and end capping by the gelsolin family of proteins. J Biol Chem. 1991 Oct 15;266(29):19269–19275. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES