Skip to main content
Genetics logoLink to Genetics
. 1995 Nov;141(3):1087–1100. doi: 10.1093/genetics/141.3.1087

Genomic Regions Required for Morphogenesis of the Drosophila Embryonic Midgut

D Bilder 1, M P Scott 1
PMCID: PMC1206832  PMID: 8582615

Abstract

The Drosophila midgut is an excellent system for studying the cell migration, cell-cell communication, and morphogenetic events that occur in organ formation. Genes representative of regulatory gene families common to all animals, including homeotic, TGFβ, and Wnt genes, play roles in midgut development. To find additional regulators of midgut morphogenesis, we screened a set of genomic deficiencies for midgut phenotypes. Fifteen genomic intervals necessary for proper midgut morphogenesis were identified; three contain genes already known to act in the midgut. Three other genomic regions are required for formation of the endoderm or visceral mesoderm components of the midgut. Nine regions are required for proper formation of the midgut constrictions. The E75 ecdysone-induced gene, which encodes a nuclear receptor superfamily member, is the relevant gene in one region and is essential for proper formation of midgut constrictions. E75 acts downstream of the previously known constriction regulators or in parallel. Temporal hormonal control may therefore work in conjunction with spatial regulation by the homeotic genes in midgut development. Another genomic region is required to activate transcription of the homeotic genes Antp and Scr specifically in visceral mesoderm. The genomic regions identified by this screen provide a map to novel midgut development regulators.

Full Text

The Full Text of this article is available as a PDF (7.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Affolter M., Nellen D., Nussbaumer U., Basler K. Multiple requirements for the receptor serine/threonine kinase thick veins reveal novel functions of TGF beta homologs during Drosophila embryogenesis. Development. 1994 Nov;120(11):3105–3117. doi: 10.1242/dev.120.11.3105. [DOI] [PubMed] [Google Scholar]
  2. Affolter M., Walldorf U., Kloter U., Schier A. F., Gehring W. J. Regional repression of a Drosophila POU box gene in the endoderm involves inductive interactions between germ layers. Development. 1993 Apr;117(4):1199–1210. doi: 10.1242/dev.117.4.1199. [DOI] [PubMed] [Google Scholar]
  3. Azpiazu N., Frasch M. tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev. 1993 Jul;7(7B):1325–1340. doi: 10.1101/gad.7.7b.1325. [DOI] [PubMed] [Google Scholar]
  4. Bienz M. Homeotic genes and positional signalling in the Drosophila viscera. Trends Genet. 1994 Jan;10(1):22–26. doi: 10.1016/0168-9525(94)90015-9. [DOI] [PubMed] [Google Scholar]
  5. Breen T. R., Harte P. J. Trithorax regulates multiple homeotic genes in the bithorax and Antennapedia complexes and exerts different tissue-specific, parasegment-specific and promoter-specific effects on each. Development. 1993 Jan;117(1):119–134. doi: 10.1242/dev.117.1.119. [DOI] [PubMed] [Google Scholar]
  6. Goodman C. M. The Delphi technique: a critique. J Adv Nurs. 1987 Nov;12(6):729–734. doi: 10.1111/j.1365-2648.1987.tb01376.x. [DOI] [PubMed] [Google Scholar]
  7. Horvitz H. R., Sternberg P. W. Multiple intercellular signalling systems control the development of the Caenorhabditis elegans vulva. Nature. 1991 Jun 13;351(6327):535–541. doi: 10.1038/351535a0. [DOI] [PubMed] [Google Scholar]
  8. Immerglück K., Lawrence P. A., Bienz M. Induction across germ layers in Drosophila mediated by a genetic cascade. Cell. 1990 Jul 27;62(2):261–268. doi: 10.1016/0092-8674(90)90364-k. [DOI] [PubMed] [Google Scholar]
  9. Kispert A., Herrmann B. G., Leptin M., Reuter R. Homologs of the mouse Brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium, and Locusta. Genes Dev. 1994 Sep 15;8(18):2137–2150. doi: 10.1101/gad.8.18.2137. [DOI] [PubMed] [Google Scholar]
  10. Klingensmith J., Nusse R., Perrimon N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev. 1994 Jan;8(1):118–130. doi: 10.1101/gad.8.1.118. [DOI] [PubMed] [Google Scholar]
  11. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mathies L. D., Kerridge S., Scott M. P. Role of the teashirt gene in Drosophila midgut morphogenesis: secreted proteins mediate the action of homeotic genes. Development. 1994 Oct;120(10):2799–2809. doi: 10.1242/dev.120.10.2799. [DOI] [PubMed] [Google Scholar]
  13. Nellen D., Affolter M., Basler K. Receptor serine/threonine kinases implicated in the control of Drosophila body pattern by decapentaplegic. Cell. 1994 Jul 29;78(2):225–237. doi: 10.1016/0092-8674(94)90293-3. [DOI] [PubMed] [Google Scholar]
  14. Penton A., Chen Y., Staehling-Hampton K., Wrana J. L., Attisano L., Szidonya J., Cassill J. A., Massagué J., Hoffmann F. M. Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a decapentaplegic receptor. Cell. 1994 Jul 29;78(2):239–250. doi: 10.1016/0092-8674(94)90294-1. [DOI] [PubMed] [Google Scholar]
  15. Reuter R., Panganiban G. E., Hoffmann F. M., Scott M. P. Homeotic genes regulate the spatial expression of putative growth factors in the visceral mesoderm of Drosophila embryos. Development. 1990 Dec;110(4):1031–1040. doi: 10.1242/dev.110.4.1031. [DOI] [PubMed] [Google Scholar]
  16. Reuter R., Scott M. P. Expression and function of the homoeotic genes Antennapedia and Sex combs reduced in the embryonic midgut of Drosophila. Development. 1990 Jun;109(2):289–303. doi: 10.1242/dev.109.2.289. [DOI] [PubMed] [Google Scholar]
  17. Segraves W. A., Hogness D. S. The E75 ecdysone-inducible gene responsible for the 75B early puff in Drosophila encodes two new members of the steroid receptor superfamily. Genes Dev. 1990 Feb;4(2):204–219. doi: 10.1101/gad.4.2.204. [DOI] [PubMed] [Google Scholar]
  18. Segraves W. A. Steroid receptors and orphan receptors in Drosophila development. Semin Cell Biol. 1994 Apr;5(2):105–113. doi: 10.1006/scel.1994.1014. [DOI] [PubMed] [Google Scholar]
  19. Smith A. V., King J. A., Orr-Weaver T. L. Identification of genomic regions required for DNA replication during Drosophila embryogenesis. Genetics. 1993 Nov;135(3):817–829. doi: 10.1093/genetics/135.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tepass U., Hartenstein V. Epithelium formation in the Drosophila midgut depends on the interaction of endoderm and mesoderm. Development. 1994 Mar;120(3):579–590. doi: 10.1242/dev.120.3.579. [DOI] [PubMed] [Google Scholar]
  21. Tremml G., Bienz M. Homeotic gene expression in the visceral mesoderm of Drosophila embryos. EMBO J. 1989 Sep;8(9):2677–2685. doi: 10.1002/j.1460-2075.1989.tb08408.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weigel D., Jürgens G., Klingler M., Jäckle H. Two gap genes mediate maternal terminal pattern information in Drosophila. Science. 1990 Apr 27;248(4954):495–498. doi: 10.1126/science.2158673. [DOI] [PubMed] [Google Scholar]
  23. Zeng W., Andrew D. J., Mathies L. D., Horner M. A., Scott M. P. Ectopic expression and function of the Antp and Scr homeotic genes: the N terminus of the homeodomain is critical to functional specificity. Development. 1993 Jun;118(2):339–352. doi: 10.1242/dev.118.2.339. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES