Skip to main content
Genetics logoLink to Genetics
. 1995 Nov;141(3):1199–1207. doi: 10.1093/genetics/141.3.1199

Advanced Intercross Lines, an Experimental Population for Fine Genetic Mapping

A Darvasi 1, M Soller 1
PMCID: PMC1206841  PMID: 8582624

Abstract

An advanced intercrossed line (AIL) is an experimental population that can provide more accurate estimates of quantitative trait loci (QTL) map location than conventional mapping populations. An AIL is produced by randomly and sequentially intercrossing a population that initially originated from a cross between two inbred lines or some variant thereof. This provides increasing probability of recombination between any two loci. Consequently, the genetic length of the entire genome is stretched, providing increased mapping resolution. In this way, for example, with the same population size and QTL effect, a 95% confidence interval of QTL map location of 20 cM in the F(2) is reduced fivefold after eight additional random mating generations (F(10)). Simulation results showed that to obtain the anticipated reduction in the confidence interval, breeding population size of the AIL in all generations should comprise an effective number of >/=100 individuals. It is proposed that AILs derived from crosses between known inbred lines may be a useful resource for fine genetic mapping.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Churchill G. A., Giovannoni J. J., Tanksley S. D. Pooled-sampling makes high-resolution mapping practical with DNA markers. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):16–20. doi: 10.1073/pnas.90.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Darvasi A., Soller M. Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics. 1994 Dec;138(4):1365–1373. doi: 10.1093/genetics/138.4.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Haldane J B, Waddington C H. Inbreeding and Linkage. Genetics. 1931 Jul;16(4):357–374. doi: 10.1093/genetics/16.4.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
  5. Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Khatib H., Darvasi A., Plotski Y., Soller M. Determining relative microsatellite allele frequencies in pooled DNA samples. PCR Methods Appl. 1994 Aug;4(1):13–18. doi: 10.1101/gr.4.1.13. [DOI] [PubMed] [Google Scholar]
  8. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McMillan I., Robertson A. The power of methods for the detection of major genes affecting quantitative characters. Heredity (Edinb) 1974 Jun;32(3):349–356. doi: 10.1038/hdy.1974.43. [DOI] [PubMed] [Google Scholar]
  10. Pacek P., Sajantila A., Syvänen A. C. Determination of allele frequencies at loci with length polymorphism by quantitative analysis of DNA amplified from pooled samples. PCR Methods Appl. 1993 May;2(4):313–317. doi: 10.1101/gr.2.4.313. [DOI] [PubMed] [Google Scholar]
  11. Sax K. The Association of Size Differences with Seed-Coat Pattern and Pigmentation in PHASEOLUS VULGARIS. Genetics. 1923 Nov;8(6):552–560. doi: 10.1093/genetics/8.6.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Thompson J. N., Jr Quantitative variation and gene number. Nature. 1975 Dec 25;258(5537):665–668. doi: 10.1038/258665a0. [DOI] [PubMed] [Google Scholar]
  13. Weller J. I. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics. 1986 Sep;42(3):627–640. [PubMed] [Google Scholar]
  14. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES