Skip to main content
Genetics logoLink to Genetics
. 1995 Nov;141(3):813–823. doi: 10.1093/genetics/141.3.813

Alkylating Agents Induce Uvm, a Reca-Independent Inducible Mutagenic Phenomenon in Escherichia Coli

G Wang 1, V A Palejwala 1, P M Dunman 1, D H Aviv 1, H S Murphy 1, M S Rahman 1, M Z Humayun 1
PMCID: PMC1206846  PMID: 8582628

Abstract

Noninstructive DNA damage in Escherichia coli induces SOS functions hypothesized to be required for mutagenesis and translesion DNA synthesis at noncoding DNA lesions. We have recently demonstrated that in E. coli cells incapable of SOS induction, prior UV-irradiation nevertheless strongly enhances mutagenesis at a noninstructive lesion borne on M13 DNA. Here, we address the question whether this effect, named UVM for UV modulation of mutagenesis, can be induced by other DNA damaging agents. Exponentially growing δrecA cells were pretreated with alkylating agents before transfection with M13 single-stranded DNA bearing a site-specific ethenocytosine residue. Effect of cell pretreatment on survival of the transfected DNA was determined as transfection efficiency. Mutagenesis at the ethenocytosine site in pretreated or untreated cells was analyzed by multiplex DNA sequencing, a phenotype-independent technology. Our data show that 1-methyl-3-nitro-1-nitrosoguanidine, N-nitroso-N-methylurea and dimethylsulfate, but not methyl iodide, are potent inducers of UVM. Because alkylating agents induce the adaptive response to defend against DNA alkylation, we asked if the genes constituting the adaptive response are required for UVM. Our data show that MNNG induction of UVM is independent of ada, alkA and alkB genes and define UVM as an inducible mutagenic phenomenon distinct from the E. coli adaptive and SOS responses.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bridges B. A., Woodgate R. Mutagenic repair in Escherichia coli: products of the recA gene and of the umuD and umuC genes act at different steps in UV-induced mutagenesis. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4193–4197. doi: 10.1073/pnas.82.12.4193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Defais M., Fauquet P., Radman M., Errera M. Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems. Virology. 1971 Feb;43(2):495–503. doi: 10.1016/0042-6822(71)90321-7. [DOI] [PubMed] [Google Scholar]
  3. Echols H., Goodman M. F. Fidelity mechanisms in DNA replication. Annu Rev Biochem. 1991;60:477–511. doi: 10.1146/annurev.bi.60.070191.002401. [DOI] [PubMed] [Google Scholar]
  4. Frank E. G., Hauser J., Levine A. S., Woodgate R. Targeting of the UmuD, UmuD', and MucA' mutagenesis proteins to DNA by RecA protein. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8169–8173. doi: 10.1073/pnas.90.17.8169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goodman M. F., Cai H., Bloom L. B., Eritja R. Nucleotide insertion and primer extension at abasic template sites in different sequence contexts. Ann N Y Acad Sci. 1994 Jul 29;726:132–143. doi: 10.1111/j.1749-6632.1994.tb52804.x. [DOI] [PubMed] [Google Scholar]
  6. Goodman M. F., Creighton S., Bloom L. B., Petruska J. Biochemical basis of DNA replication fidelity. Crit Rev Biochem Mol Biol. 1993;28(2):83–126. doi: 10.3109/10409239309086792. [DOI] [PubMed] [Google Scholar]
  7. Greenberg J. T., Demple B. A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress. J Bacteriol. 1989 Jul;171(7):3933–3939. doi: 10.1128/jb.171.7.3933-3939.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greenberg J. T., Demple B. Overproduction of peroxide-scavenging enzymes in Escherichia coli suppresses spontaneous mutagenesis and sensitivity to redox-cycling agents in oxyR-mutants. EMBO J. 1988 Aug;7(8):2611–2617. doi: 10.1002/j.1460-2075.1988.tb03111.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacobsen J. S., Humayun M. Z. Mechanisms of mutagenesis by the vinyl chloride metabolite chloroacetaldehyde. Effect of gene-targeted in vitro adduction of M13 DNA on DNA template activity in vivo and in vitro. Biochemistry. 1990 Jan 16;29(2):496–504. doi: 10.1021/bi00454a025. [DOI] [PubMed] [Google Scholar]
  10. Jacobsen J. S., Perkins C. P., Callahan J. T., Sambamurti K., Humayun M. Z. Mechanisms of mutagenesis by chloroacetaldehyde. Genetics. 1989 Feb;121(2):213–222. doi: 10.1093/genetics/121.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Joyce C. M., Grindley N. D. Method for determining whether a gene of Escherichia coli is essential: application to the polA gene. J Bacteriol. 1984 May;158(2):636–643. doi: 10.1128/jb.158.2.636-643.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kunkel T. A. Mutational specificity of depurination. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1494–1498. doi: 10.1073/pnas.81.5.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lawrence C. W., Borden A., Banerjee S. K., LeClerc J. E. Mutation frequency and spectrum resulting from a single abasic site in a single-stranded vector. Nucleic Acids Res. 1990 Apr 25;18(8):2153–2157. doi: 10.1093/nar/18.8.2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lindahl T., Sedgwick B., Sekiguchi M., Nakabeppu Y. Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem. 1988;57:133–157. doi: 10.1146/annurev.bi.57.070188.001025. [DOI] [PubMed] [Google Scholar]
  15. Loeb L. A., Preston B. D. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet. 1986;20:201–230. doi: 10.1146/annurev.ge.20.120186.001221. [DOI] [PubMed] [Google Scholar]
  16. Matijasevic Z., Sekiguchi M., Ludlum D. B. Release of N2,3-ethenoguanine from chloroacetaldehyde-treated DNA by Escherichia coli 3-methyladenine DNA glycosylase II. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9331–9334. doi: 10.1073/pnas.89.19.9331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moriya M., Zhang W., Johnson F., Grollman A. P. Mutagenic potency of exocyclic DNA adducts: marked differences between Escherichia coli and simian kidney cells. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11899–11903. doi: 10.1073/pnas.91.25.11899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Otsuka M., Nakabeppu Y., Sekiguchi M. Ability of various alkylating agents to induce adaptive and SOS responses: a study with lacZ fusion. Mutat Res. 1985 Sep;146(2):149–154. doi: 10.1016/0167-8817(85)90005-7. [DOI] [PubMed] [Google Scholar]
  19. Palejwala V. A., Pandya G. A., Bhanot O. S., Solomon J. J., Murphy H. S., Dunman P. M., Humayun M. Z. UVM, an ultraviolet-inducible RecA-independent mutagenic phenomenon in Escherichia coli. J Biol Chem. 1994 Nov 4;269(44):27433–27440. [PubMed] [Google Scholar]
  20. Palejwala V. A., Simha D., Humayun M. Z. Mechanisms of mutagenesis by exocyclic DNA adducts. Transfection of M13 viral DNA bearing a site-specific adduct shows that ethenocytosine is a highly efficient RecA-independent mutagenic noninstructional lesion. Biochemistry. 1991 Sep 10;30(36):8736–8743. doi: 10.1021/bi00100a004. [DOI] [PubMed] [Google Scholar]
  21. Rabkin S. D., Strauss B. S. A role for DNA polymerase in the specificity of nucleotide incorporation opposite N-acetyl-2-aminofluorene adducts. J Mol Biol. 1984 Sep 25;178(3):569–594. doi: 10.1016/0022-2836(84)90239-0. [DOI] [PubMed] [Google Scholar]
  22. Radman M. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci. 1975;5A:355–367. doi: 10.1007/978-1-4684-2895-7_48. [DOI] [PubMed] [Google Scholar]
  23. Sambamurti K., Callahan J., Luo X., Perkins C. P., Jacobsen J. S., Humayun M. Z. Mechanisms of mutagenesis by a bulky DNA lesion at the guanine N7 position. Genetics. 1988 Dec;120(4):863–873. doi: 10.1093/genetics/120.4.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shevell D. E., Friedman B. M., Walker G. C. Resistance to alkylation damage in Escherichia coli: role of the Ada protein in induction of the adaptive response. Mutat Res. 1990 Nov-Dec;233(1-2):53–72. doi: 10.1016/0027-5107(90)90151-s. [DOI] [PubMed] [Google Scholar]
  25. Simha D., Palejwala V. A., Humayun M. Z. Mechanisms of mutagenesis by exocyclic DNA adducts. Construction and in vitro template characteristics of an oligonucleotide bearing a single site-specific ethenocytosine. Biochemistry. 1991 Sep 10;30(36):8727–8735. doi: 10.1021/bi00100a003. [DOI] [PubMed] [Google Scholar]
  26. Simha D., Yadav D., Rzepka R. W., Palejwala V. A., Humayun M. Z. Base incorporation and extension at a site-specific ethenocytosine by Escherichia coli DNA polymerase I Klenow fragment. Mutat Res. 1994 Jan 16;304(2):265–269. doi: 10.1016/0027-5107(94)90219-4. [DOI] [PubMed] [Google Scholar]
  27. Sommer S., Knezevic J., Bailone A., Devoret R. Induction of only one SOS operon, umuDC, is required for SOS mutagenesis in Escherichia coli. Mol Gen Genet. 1993 May;239(1-2):137–144. doi: 10.1007/BF00281612. [DOI] [PubMed] [Google Scholar]
  28. Sternberg N. L., Maurer R. Bacteriophage-mediated generalized transduction in Escherichia coli and Salmonella typhimurium. Methods Enzymol. 1991;204:18–43. doi: 10.1016/0076-6879(91)04004-8. [DOI] [PubMed] [Google Scholar]
  29. Storz G., Tartaglia L. A., Ames B. N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science. 1990 Apr 13;248(4952):189–194. doi: 10.1126/science.2183352. [DOI] [PubMed] [Google Scholar]
  30. Takahashi K., Kawazoe Y. Potent induction of the adaptive response by a weak mutagen, methyl iodide, in Escherichia coli. Mutat Res. 1987 Oct;180(2):163–169. doi: 10.1016/0027-5107(87)90211-9. [DOI] [PubMed] [Google Scholar]
  31. Volkert M. R., Hajec L. I., Matijasevic Z., Fang F. C., Prince R. Induction of the Escherichia coli aidB gene under oxygen-limiting conditions requires a functional rpoS (katF) gene. J Bacteriol. 1994 Dec;176(24):7638–7645. doi: 10.1128/jb.176.24.7638-7645.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Volkert M. R., Nguyen D. C., Beard K. C. Escherichia coli gene induction by alkylation treatment. Genetics. 1986 Jan;112(1):11–26. doi: 10.1093/genetics/112.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weigle J. J. Induction of Mutations in a Bacterial Virus. Proc Natl Acad Sci U S A. 1953 Jul;39(7):628–636. doi: 10.1073/pnas.39.7.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Woodgate R., Rajagopalan M., Lu C., Echols H. UmuC mutagenesis protein of Escherichia coli: purification and interaction with UmuD and UmuD'. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7301–7305. doi: 10.1073/pnas.86.19.7301. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES