Skip to main content
Genetics logoLink to Genetics
. 1995 Nov;141(3):977–988. doi: 10.1093/genetics/141.3.977

Identification and Cloning of Unc-119, a Gene Expressed in the Caenorhabditis Elegans Nervous System

M Maduro 1, D Pilgrim 1
PMCID: PMC1206859  PMID: 8582641

Abstract

A spontaneous mutation affecting locomotion of the nematode Caenorhabditis elegans has been mapped to a new gene, unc-119. Phenotypic characterization of the mutants suggests the defect does not lie in the musculature and that the animals also have defects in feeding behavior and chemosensation. unc-119 has been physically mapped relative to a previously identified chromosomal break in linkage group III, and DNA clones covering the region can rescue the mutant phenotype in transgenic animals. Three more alleles at the locus, with identical phenotypes, have been induced and characterized, all of which are putative null alleles. The predicted UNC-119 protein has no significant similarity to other known proteins. Expression of an unc-119/lacZ fusion in transgenic animals is seen in many neurons, suggesting that the unc-119 mutant phenotype is due to a defect in the nervous system.

Full Text

The Full Text of this article is available as a PDF (6.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert P. S., Brown S. J., Riddle D. L. Sensory control of dauer larva formation in Caenorhabditis elegans. J Comp Neurol. 1981 May 20;198(3):435–451. doi: 10.1002/cne.901980305. [DOI] [PubMed] [Google Scholar]
  2. Albertson D. G. Mapping chromosome rearrangement breakpoints to the physical map of Caenorhabditis elegans by fluorescent in situ hybridization. Genetics. 1993 May;134(1):211–219. doi: 10.1093/genetics/134.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Albertson D. G., Thomson J. N. The kinetochores of Caenorhabditis elegans. Chromosoma. 1982;86(3):409–428. doi: 10.1007/BF00292267. [DOI] [PubMed] [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  5. Anderson P. Molecular genetics of nematode muscle. Annu Rev Genet. 1989;23:507–525. doi: 10.1146/annurev.ge.23.120189.002451. [DOI] [PubMed] [Google Scholar]
  6. Avery L., Bargmann C. I., Horvitz H. R. The Caenorhabditis elegans unc-31 gene affects multiple nervous system-controlled functions. Genetics. 1993 Jun;134(2):455–464. doi: 10.1093/genetics/134.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Avery L., Horvitz H. R. Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. J Exp Zool. 1990 Mar;253(3):263–270. doi: 10.1002/jez.1402530305. [DOI] [PubMed] [Google Scholar]
  8. Barstead R. J., Waterston R. H. The basal component of the nematode dense-body is vinculin. J Biol Chem. 1989 Jun 15;264(17):10177–10185. [PubMed] [Google Scholar]
  9. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cassada R. C., Russell R. L. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol. 1975 Oct;46(2):326–342. doi: 10.1016/0012-1606(75)90109-8. [DOI] [PubMed] [Google Scholar]
  11. Chen W., Lim L. The Caenorhabditis elegans small GTP-binding protein RhoA is enriched in the nerve ring and sensory neurons during larval development. J Biol Chem. 1994 Dec 23;269(51):32394–32404. [PubMed] [Google Scholar]
  12. Coulson A., Kozono Y., Lutterbach B., Shownkeen R., Sulston J., Waterston R. YACs and the C. elegans genome. Bioessays. 1991 Aug;13(8):413–417. doi: 10.1002/bies.950130809. [DOI] [PubMed] [Google Scholar]
  13. Coulson A., Sulston J., Brenner S., Karn J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7821–7825. doi: 10.1073/pnas.83.20.7821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Coulson A., Waterston R., Kiff J., Sulston J., Kohara Y. Genome linking with yeast artificial chromosomes. Nature. 1988 Sep 8;335(6186):184–186. doi: 10.1038/335184a0. [DOI] [PubMed] [Google Scholar]
  15. Epstein H. F., Thomson J. N. Temperature-sensitive mutation affecting myofilament assembly in Caenorhabditis elegans. Nature. 1974 Aug 16;250(467):579–580. doi: 10.1038/250579a0. [DOI] [PubMed] [Google Scholar]
  16. Fire A., Harrison S. W., Dixon D. A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene. 1990 Sep 14;93(2):189–198. doi: 10.1016/0378-1119(90)90224-f. [DOI] [PubMed] [Google Scholar]
  17. Fire A. Integrative transformation of Caenorhabditis elegans. EMBO J. 1986 Oct;5(10):2673–2680. doi: 10.1002/j.1460-2075.1986.tb04550.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Granato M., Schnabel H., Schnabel R. Genesis of an organ: molecular analysis of the pha-1 gene. Development. 1994 Oct;120(10):3005–3017. doi: 10.1242/dev.120.10.3005. [DOI] [PubMed] [Google Scholar]
  20. Hall D. H., Hedgecock E. M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell. 1991 May 31;65(5):837–847. doi: 10.1016/0092-8674(91)90391-b. [DOI] [PubMed] [Google Scholar]
  21. Hata Y., Slaughter C. A., Südhof T. C. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature. 1993 Nov 25;366(6453):347–351. doi: 10.1038/366347a0. [DOI] [PubMed] [Google Scholar]
  22. Hedgecock E. M., Culotti J. G., Hall D. H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron. 1990 Jan;4(1):61–85. doi: 10.1016/0896-6273(90)90444-k. [DOI] [PubMed] [Google Scholar]
  23. Hekimi S. A neuron-specific antigen in C. elegans allows visualization of the entire nervous system. Neuron. 1990 Jun;4(6):855–865. doi: 10.1016/0896-6273(90)90138-6. [DOI] [PubMed] [Google Scholar]
  24. Hodgkin J. Molecular cloning and duplication of the nematode sex-determining gene tra-1. Genetics. 1993 Mar;133(3):543–560. doi: 10.1093/genetics/133.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hodgkin J. More sex-determination mutants of Caenorhabditis elegans. Genetics. 1980 Nov;96(3):649–664. doi: 10.1093/genetics/96.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hope I. A. 'Promoter trapping' in Caenorhabditis elegans. Development. 1991 Oct;113(2):399–408. doi: 10.1242/dev.113.2.399. [DOI] [PubMed] [Google Scholar]
  27. Hosono R., Hekimi S., Kamiya Y., Sassa T., Murakami S., Nishiwaki K., Miwa J., Taketo A., Kodaira K. I. The unc-18 gene encodes a novel protein affecting the kinetics of acetylcholine metabolism in the nematode Caenorhabditis elegans. J Neurochem. 1992 Apr;58(4):1517–1525. doi: 10.1111/j.1471-4159.1992.tb11373.x. [DOI] [PubMed] [Google Scholar]
  28. Huang X. Y., Hirsh D. A second trans-spliced RNA leader sequence in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8640–8644. doi: 10.1073/pnas.86.22.8640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ishii N., Wadsworth W. G., Stern B. D., Culotti J. G., Hedgecock E. M. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron. 1992 Nov;9(5):873–881. doi: 10.1016/0896-6273(92)90240-e. [DOI] [PubMed] [Google Scholar]
  30. Krause M., Hirsh D. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell. 1987 Jun 19;49(6):753–761. doi: 10.1016/0092-8674(87)90613-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lee J., Jongeward G. D., Sternberg P. W. unc-101, a gene required for many aspects of Caenorhabditis elegans development and behavior, encodes a clathrin-associated protein. Genes Dev. 1994 Jan;8(1):60–73. doi: 10.1101/gad.8.1.60. [DOI] [PubMed] [Google Scholar]
  32. Leung-Hagesteijn C., Spence A. M., Stern B. D., Zhou Y., Su M. W., Hedgecock E. M., Culotti J. G. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell. 1992 Oct 16;71(2):289–299. doi: 10.1016/0092-8674(92)90357-i. [DOI] [PubMed] [Google Scholar]
  33. Lewis J. A., Wu C. H., Levine J. H., Berg H. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience. 1980;5(6):967–989. doi: 10.1016/0306-4522(80)90180-3. [DOI] [PubMed] [Google Scholar]
  34. MacLeod A. R., Karn J., Brenner S. Molecular analysis of the unc-54 myosin heavy-chain gene of Caenorhabditis elegans. Nature. 1981 Jun 4;291(5814):386–390. doi: 10.1038/291386a0. [DOI] [PubMed] [Google Scholar]
  35. McIntire S. L., Jorgensen E., Horvitz H. R. Genes required for GABA function in Caenorhabditis elegans. Nature. 1993 Jul 22;364(6435):334–337. doi: 10.1038/364334a0. [DOI] [PubMed] [Google Scholar]
  36. Mello C. C., Kramer J. M., Stinchcomb D., Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Miller D. M., 3rd, Niemeyer C. J., Chitkara P. Dominant unc-37 mutations suppress the movement defect of a homeodomain mutation in unc-4, a neural specificity gene in Caenorhabditis elegans. Genetics. 1993 Nov;135(3):741–753. doi: 10.1093/genetics/135.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Moerman D. G., Benian G. M., Waterston R. H. Molecular cloning of the muscle gene unc-22 in Caenorhabditis elegans by Tc1 transposon tagging. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2579–2583. doi: 10.1073/pnas.83.8.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Mori I., Moerman D. G., Waterston R. H. Interstrain crosses enhance excision of Tc1 transposable elements in Caenorhabditis elegans. Mol Gen Genet. 1990 Jan;220(2):251–255. doi: 10.1007/BF00260490. [DOI] [PubMed] [Google Scholar]
  40. Nonet M. L., Grundahl K., Meyer B. J., Rand J. B. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell. 1993 Jul 2;73(7):1291–1305. doi: 10.1016/0092-8674(93)90357-v. [DOI] [PubMed] [Google Scholar]
  41. Ogura K., Wicky C., Magnenat L., Tobler H., Mori I., Müller F., Ohshima Y. Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes Dev. 1994 Oct 15;8(20):2389–2400. doi: 10.1101/gad.8.20.2389. [DOI] [PubMed] [Google Scholar]
  42. Pilgrim D. The genetic and RFLP characterization of the left end of linkage group III in Caenorhabditis elegans. Genome. 1993 Aug;36(4):712–724. doi: 10.1139/g93-096. [DOI] [PubMed] [Google Scholar]
  43. Riddle D. L., Swanson M. M., Albert P. S. Interacting genes in nematode dauer larva formation. Nature. 1981 Apr 23;290(5808):668–671. doi: 10.1038/290668a0. [DOI] [PubMed] [Google Scholar]
  44. Rogalski T. M., Williams B. D., Mullen G. P., Moerman D. G. Products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan. Genes Dev. 1993 Aug;7(8):1471–1484. doi: 10.1101/gad.7.8.1471. [DOI] [PubMed] [Google Scholar]
  45. Rose A. M., Harris L. J., Mawji N. R., Morris W. J. Tc1(Hin): a form of the transposable element Tc1 in Caenorhabditis elegans. Can J Biochem Cell Biol. 1985 Jul;63(7):752–756. doi: 10.1139/o85-094. [DOI] [PubMed] [Google Scholar]
  46. Rosenzweig B., Liao L. W., Hirsh D. Sequence of the C. elegans transposable element Tc1. Nucleic Acids Res. 1983 Jun 25;11(12):4201–4209. doi: 10.1093/nar/11.12.4201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Siddiqui S. S., Culotti J. G. Examination of neurons in wild type and mutants of Caenorhabditis elegans using antibodies to horseradish peroxidase. J Neurogenet. 1991;7(4):193–211. doi: 10.3109/01677069109167433. [DOI] [PubMed] [Google Scholar]
  48. Sulston J. E., Albertson D. G., Thomson J. N. The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev Biol. 1980 Aug;78(2):542–576. doi: 10.1016/0012-1606(80)90352-8. [DOI] [PubMed] [Google Scholar]
  49. Ségalat L., Elkes D. A., Kaplan J. M. Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science. 1995 Mar 17;267(5204):1648–1651. doi: 10.1126/science.7886454. [DOI] [PubMed] [Google Scholar]
  50. Thomas J. H., Birnby D. A., Vowels J. J. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics. 1993 Aug;134(4):1105–1117. doi: 10.1093/genetics/134.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES