Abstract
We investigated the size and continuity of DNA segments integrated in Bacillus subtilis transformation. We transformed B. subtilis strain 1A2 toward rifampicin resistance (coded by rpoB) with genomic DNA and with a PCR-amplified 3.4-kb segment of the rpoB gene from several donors. Restriction analysis showed that smaller lengths of donor DNA integrated into the chromosome with transformation by PCR-amplified DNA than by genomic DNA. Nevertheless, integration of very short segments (<2 kb) from large, genomic donor molecules was not a rare event. With PCR-amplified segments as donor DNA, smaller fragments were integrated when there was greater sequence divergence between donor and recipient. There was a large stochastic component to the pattern of recombination. We detected discontinuity in the integration of donor segments within the rpoB gene, probably due to multiple integration events involving a single donor molecule. The transfer of adaptations across Bacillus species may be facilitated by the small sizes of DNA segments integrated in transformation.
Full Text
The Full Text of this article is available as a PDF (1,011.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnes W. M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2216–2220. doi: 10.1073/pnas.91.6.2216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Contente S., Dubnau D. Marker rescue transformation by linear plasmid DNA in Bacillus subtilis. Plasmid. 1979 Oct;2(4):555–571. doi: 10.1016/0147-619x(79)90054-4. [DOI] [PubMed] [Google Scholar]
- Dubnau D., Cirigliano C. Fate of transforming deoxyribonucleic acid after uptake by competent Bacillus subtilis: size and distribution of the integrated donor segments. J Bacteriol. 1972 Aug;111(2):488–494. doi: 10.1128/jb.111.2.488-494.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fornili S. L., Fox M. S. Electron microscope visualization of the products of Bacillus subtilis transformation. J Mol Biol. 1977 Jun 15;113(1):181–191. doi: 10.1016/0022-2836(77)90048-1. [DOI] [PubMed] [Google Scholar]
- Morrison D. A., Guild W. R. Activity of deoxyribonucleic acid fragments of defined size in Bacillus subtilis transformation. J Bacteriol. 1972 Oct;112(1):220–223. doi: 10.1128/jb.112.1.220-223.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts M. S., Cohan F. M. The effect of DNA sequence divergence on sexual isolation in Bacillus. Genetics. 1993 Jun;134(2):401–408. doi: 10.1093/genetics/134.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. M., Dowson C. G., Spratt B. G. Localized sex in bacteria. Nature. 1991 Jan 3;349(6304):29–31. doi: 10.1038/349029a0. [DOI] [PubMed] [Google Scholar]
- Zawadzki P., Roberts M. S., Cohan F. M. The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics. 1995 Jul;140(3):917–932. doi: 10.1093/genetics/140.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]