Skip to main content
Genetics logoLink to Genetics
. 1995 Dec;141(4):1339–1349. doi: 10.1093/genetics/141.4.1339

Mutant Rec-1 Eliminates the Meiotic Pattern of Crossing over in Caenorhabditis Elegans

M C Zetka 1, A M Rose 1
PMCID: PMC1206871  PMID: 8601478

Abstract

Meiotic crossovers are not randomly distributed along the chromosome. In Caenorhabditis elegans the central portions of the autosomes have relatively few crossovers compared to the flanking regions. We have measured the frequency of crossing over for several intervals across chromosome I in strains mutant for rec-1. The chromosome is ~50 map units in both wild-type and rec-1 homozygotes, however, the distribution of exchanges is very different in rec-1. Map distances expand across the gene cluster and contract near the right end of the chromosome, resulting in a genetic map more consistent with the physical map. Mutations in two other genes, him-6 and him-14, also disrupted the distribution of exchanges. Unlike rec-1, individuals homozygous for him-6 and him-14 had an overall reduction in the amount of crossing over accompanied by a high frequency of nondisjunction and reduced egg hatching. In rec-1; him-6 and rec-1; him-14 homozygotes the frequency of crossing over was characteristic of the Him mutant phenotype, whereas the distribution of the reduced number of exchanges was characteristic of the Rec-1 pattern. It appears that these gene products play a role in establishing the meiotic pattern of exchange events.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertson D. G. Localization of the ribosomal genes in Caenorhabditis elegans chromosomes by in situ hybridization using biotin-labeled probes. EMBO J. 1984 Jun;3(6):1227–1234. doi: 10.1002/j.1460-2075.1984.tb01957.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson P., Brenner S. A selection for myosin heavy chain mutants in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4470–4474. doi: 10.1073/pnas.81.14.4470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker B. S., Carpenter A. T., Esposito M. S., Esposito R. E., Sandler L. The genetic control of meiosis. Annu Rev Genet. 1976;10:53–134. doi: 10.1146/annurev.ge.10.120176.000413. [DOI] [PubMed] [Google Scholar]
  4. Baker B. S., Carpenter A. T. Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster. Genetics. 1972 Jun;71(2):255–286. doi: 10.1093/genetics/71.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barnes T. M., Kohara Y., Coulson A., Hekimi S. Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics. 1995 Sep;141(1):159–179. doi: 10.1093/genetics/141.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Broverman S. A., Meneely P. M. Meiotic mutants that cause a polar decrease in recombination on the X chromosome in Caenorhabditis elegans. Genetics. 1994 Jan;136(1):119–127. doi: 10.1093/genetics/136.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carpenter A. T., Sandler L. On recombination-defective meiotic mutants in Drosophila melanogaster. Genetics. 1974 Mar;76(3):453–475. doi: 10.1093/genetics/76.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clark-Maguire S., Mains P. E. mei-1, a gene required for meiotic spindle formation in Caenorhabditis elegans, is a member of a family of ATPases. Genetics. 1994 Feb;136(2):533–546. doi: 10.1093/genetics/136.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Game J. C. Pulsed-field gel analysis of the pattern of DNA double-strand breaks in the Saccharomyces genome during meiosis. Dev Genet. 1992;13(6):485–497. doi: 10.1002/dvg.1020130610. [DOI] [PubMed] [Google Scholar]
  10. Greenwald I., Coulson A., Sulston J., Priess J. Correlation of the physical and genetic maps in the lin-12 region of Caenorhabditis elegans. Nucleic Acids Res. 1987 Mar 11;15(5):2295–2307. doi: 10.1093/nar/15.5.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hartman P. S., Herman R. K. Radiation-sensitive mutants of Caenorhabditis elegans. Genetics. 1982 Oct;102(2):159–178. doi: 10.1093/genetics/102.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kemphues K. J., Kusch M., Wolf N. Maternal-effect lethal mutations on linkage group II of Caenorhabditis elegans. Genetics. 1988 Dec;120(4):977–986. doi: 10.1093/genetics/120.4.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim J. S., Rose A. M. The effect of gamma radiation on recombination frequency in Caenorhabditis elegans. Genome. 1987 Jun;29(3):457–462. doi: 10.1139/g87-079. [DOI] [PubMed] [Google Scholar]
  15. McKim K. S., Howell A. M., Rose A. M. The effects of translocations on recombination frequency in Caenorhabditis elegans. Genetics. 1988 Dec;120(4):987–1001. doi: 10.1093/genetics/120.4.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McKim K. S., Peters K., Rose A. M. Two types of sites required for meiotic chromosome pairing in Caenorhabditis elegans. Genetics. 1993 Jul;134(3):749–768. doi: 10.1093/genetics/134.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McKim K. S., Rose A. M. Chromosome I duplications in Caenorhabditis elegans. Genetics. 1990 Jan;124(1):115–132. doi: 10.1093/genetics/124.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ohta K., Shibata T., Nicolas A. Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J. 1994 Dec 1;13(23):5754–5763. doi: 10.1002/j.1460-2075.1994.tb06913.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Parry D. M. A meiotic mutant affecting recombination in female Drosophila melanogaster. Genetics. 1973 Mar;73(3):465–486. doi: 10.1093/genetics/73.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Prasad S. S., Baillie D. L. Evolutionarily conserved coding sequences in the dpy-20-unc-22 region of Caenorhabditis elegans. Genomics. 1989 Aug;5(2):185–198. doi: 10.1016/0888-7543(89)90045-1. [DOI] [PubMed] [Google Scholar]
  21. Rose A. M., Baillie D. L. A mutation in Caenorhabditis elegans that increases recombination frequency more than threefold. Nature. 1979 Oct 18;281(5732):599–600. doi: 10.1038/281599a0. [DOI] [PubMed] [Google Scholar]
  22. Rose A. M., Baillie D. L., Curran J. Meiotic pairing behavior of two free duplications of linkage group I in Caenorhabditis elegans. Mol Gen Genet. 1984;195(1-2):52–56. doi: 10.1007/BF00332723. [DOI] [PubMed] [Google Scholar]
  23. Sandler L., Szauter P. The effect of recombination-defective meiotic mutants on fourth-chromosome crossing over in Drosophila melanogaster. Genetics. 1978 Dec;90(4):699–712. doi: 10.1093/genetics/90.4.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sun H., Treco D., Schultes N. P., Szostak J. W. Double-strand breaks at an initiation site for meiotic gene conversion. Nature. 1989 Mar 2;338(6210):87–90. doi: 10.1038/338087a0. [DOI] [PubMed] [Google Scholar]
  25. Thacker C., Peters K., Srayko M., Rose A. M. The bli-4 locus of Caenorhabditis elegans encodes structurally distinct kex2/subtilisin-like endoproteases essential for early development and adult morphology. Genes Dev. 1995 Apr 15;9(8):956–971. doi: 10.1101/gad.9.8.956. [DOI] [PubMed] [Google Scholar]
  26. Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]
  27. Wu T. C., Lichten M. Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae. Genetics. 1995 May;140(1):55–66. doi: 10.1093/genetics/140.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zenvirth D., Arbel T., Sherman A., Goldway M., Klein S., Simchen G. Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae. EMBO J. 1992 Sep;11(9):3441–3447. doi: 10.1002/j.1460-2075.1992.tb05423.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zetka M. C., Rose A. M. Sex-related differences in crossing over in Caenorhabditis elegans. Genetics. 1990 Oct;126(2):355–363. doi: 10.1093/genetics/126.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zetka M. C., Rose A. M. The meiotic behavior of an inversion in Caenorhabditis elegans. Genetics. 1992 Jun;131(2):321–332. doi: 10.1093/genetics/131.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zetka M., Rose A. The genetics of meiosis in Caenorhabditis elegans. Trends Genet. 1995 Jan;11(1):27–31. doi: 10.1016/s0168-9525(00)88983-0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES