Skip to main content
Genetics logoLink to Genetics
. 1995 Dec;141(4):1537–1545. doi: 10.1093/genetics/141.4.1537

Major Quantitative Trait Loci Affecting Honey Bee Foraging Behavior

G J Hunt 1, R E Page-Jr 1, M K Fondrk 1, C J Dullum 1
PMCID: PMC1206885  PMID: 8601492

Abstract

We identified two genomic regions that affect the amount of pollen stored in honey bee colonies and influence whether foragers will collect pollen or nectar. We selected for the amount of pollen stored in combs of honey bee colonies, a colony-level trait, and then used random amplified polymorphic DNA (RAPD) markers and interval mapping procedures with data from backcross colonies to identify two quantitative trait loci (pln1 and pln2, LOD 3.1 and 2.3, respectively). Quantitative trait loci effects were confirmed in a separate cross by demonstrating the cosegregation of marker alleles with the foraging behavior of individual workers. Both pln1 and pln2 had an effect on the amount of pollen carried by foragers returning to the colony, as inferred by the association between linked RAPD marker alleles, D8-.3f and 301-.55, and the individual pollen load weights of returning foragers. The alleles of the two marker loci were nonrandomly distributed with respect to foraging task. The two loci appeared to have different effects on foraging behavior. Individuals with alternative alleles for the marker linked to pln2 (but not pln1) differed with respect to the nectar sugar concentration of their nectar loads.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cardon L. R., Smith S. D., Fulker D. W., Kimberling W. J., Pennington B. F., DeFries J. C. Quantitative trait locus for reading disability on chromosome 6. Science. 1994 Oct 14;266(5183):276–279. doi: 10.1126/science.7939663. [DOI] [PubMed] [Google Scholar]
  2. Carlier M., Roubertoux P. L., Kottler M. L., Degrelle H. Y chromosome and aggression in strains of laboratory mice. Behav Genet. 1990 Jan;20(1):137–156. doi: 10.1007/BF01070750. [DOI] [PubMed] [Google Scholar]
  3. Crabbe J. C., Belknap J. K., Buck K. J. Genetic animal models of alcohol and drug abuse. Science. 1994 Jun 17;264(5166):1715–1723. doi: 10.1126/science.8209252. [DOI] [PubMed] [Google Scholar]
  4. Doebley J., Stec A. Genetic analysis of the morphological differences between maize and teosinte. Genetics. 1991 Sep;129(1):285–295. doi: 10.1093/genetics/129.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Free J. B. Factors determining the collection of pollen by honeybee foragers. Anim Behav. 1967 Jan;15(1):134–144. doi: 10.1016/s0003-3472(67)80024-1. [DOI] [PubMed] [Google Scholar]
  6. Gilliam T. C. Mapping psychiatric disease genes: impact of new molecular strategies. J Psychiatr Res. 1992 Oct;26(4):309–326. doi: 10.1016/0022-3956(92)90038-p. [DOI] [PubMed] [Google Scholar]
  7. Hall J. C. The mating of a fly. Science. 1994 Jun 17;264(5166):1702–1714. doi: 10.1126/science.8209251. [DOI] [PubMed] [Google Scholar]
  8. Hunt G. J., Page R. E., Jr Linkage map of the honey bee, Apis mellifera, based on RAPD markers. Genetics. 1995 Mar;139(3):1371–1382. doi: 10.1093/genetics/139.3.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kyriacou C. P., Hall J. C. Genetic and molecular analysis of Drosophila behavior. Adv Genet. 1994;31:139–186. doi: 10.1016/s0065-2660(08)60397-1. [DOI] [PubMed] [Google Scholar]
  10. Lai C., Lyman R. F., Long A. D., Langley C. H., Mackay T. F. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science. 1994 Dec 9;266(5191):1697–1702. doi: 10.1126/science.7992053. [DOI] [PubMed] [Google Scholar]
  11. Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988 Oct 20;335(6192):721–726. doi: 10.1038/335721a0. [DOI] [PubMed] [Google Scholar]
  12. Takahashi J. S., Pinto L. H., Vitaterna M. H. Forward and reverse genetic approaches to behavior in the mouse. Science. 1994 Jun 17;264(5166):1724–1733. doi: 10.1126/science.8209253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. de Belle J. S., Hilliker A. J., Sokolowski M. B. Genetic localization of foraging (for): a major gene for larval behavior in Drosophila melanogaster. Genetics. 1989 Sep;123(1):157–163. doi: 10.1093/genetics/123.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES