Abstract
The genetic basis of body weight in the mouse was investigated by measuring frequency changes of microsatellite marker alleles in lines divergently selected for body weight from a base population of a cross between two inbred strains. In several regions of the genome, sharp peaks of frequency change at linked markers were detected, which suggested the presence of single genes of moderate effect, although in several other regions, significant frequency changes occurred over large portions of chromosomes. A method based on maximum likelihood was used to infer effects and map positions of quantitative trait loci (QTLs) based on genotype frequencies at one or more marker loci. Eleven QTLs with effects in the range 0.17-0.28 phenotypic standard deviations were detected; but under an additive model, these did not fully account for the observed selection response. Tests for the presence of more than one QTL in regions where there were large changes of marker allele frequency were mostly inconclusive.
Full Text
The Full Text of this article is available as a PDF (863.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford G. E., Famula T. R. Evidence for a major gene for rapid postweaning growth in mice. Genet Res. 1984 Dec;44(3):293–308. doi: 10.1017/s0016672300026537. [DOI] [PubMed] [Google Scholar]
- Copeland N. G., Jenkins N. A. Development and applications of a molecular genetic linkage map of the mouse genome. Trends Genet. 1991 Apr;7(4):113–118. doi: 10.1016/0168-9525(91)90455-y. [DOI] [PubMed] [Google Scholar]
- Copeland N. G., Jenkins N. A., Gilbert D. J., Eppig J. T., Maltais L. J., Miller J. C., Dietrich W. F., Weaver A., Lincoln S. E., Steen R. G. A genetic linkage map of the mouse: current applications and future prospects. Science. 1993 Oct 1;262(5130):57–66. doi: 10.1126/science.8211130. [DOI] [PubMed] [Google Scholar]
- Crabbe J. C., Belknap J. K., Buck K. J. Genetic animal models of alcohol and drug abuse. Science. 1994 Jun 17;264(5166):1715–1723. doi: 10.1126/science.8209252. [DOI] [PubMed] [Google Scholar]
- Dietrich W. F., Miller J. C., Steen R. G., Merchant M., Damron D., Nahf R., Gross A., Joyce D. C., Wessel M., Dredge R. D. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nat Genet. 1994 Jun;7(2 Spec No):220–245. doi: 10.1038/ng0694supp-220. [DOI] [PubMed] [Google Scholar]
- Dietrich W., Katz H., Lincoln S. E., Shin H. S., Friedman J., Dracopoli N. C., Lander E. S. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics. 1992 Jun;131(2):423–447. doi: 10.1093/genetics/131.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DuMouchel W. H., Anderson W. W. The analysis of selection in experimental populations. Genetics. 1968 Mar;58(3):435–449. doi: 10.1093/genetics/58.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedman J. M., Leibel R. L. Tackling a weighty problem. Cell. 1992 Apr 17;69(2):217–220. doi: 10.1016/0092-8674(92)90402-x. [DOI] [PubMed] [Google Scholar]
- Froesch E. R., Schmid C., Schwander J., Zapf J. Actions of insulin-like growth factors. Annu Rev Physiol. 1985;47:443–467. doi: 10.1146/annurev.ph.47.030185.002303. [DOI] [PubMed] [Google Scholar]
- Garnett I., Falconer D. S. Protein variation in strains of mice differing in body size. Genet Res. 1975 Feb;25(1):45–57. doi: 10.1017/s0016672300015421. [DOI] [PubMed] [Google Scholar]
- Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
- Hearne C. M., McAleer M. A., Love J. M., Aitman T. J., Cornall R. J., Ghosh S., Knight A. M., Prins J. B., Todd J. A. Additional microsatellite markers for mouse genome mapping. Mamm Genome. 1991;1(4):273–282. doi: 10.1007/BF00352339. [DOI] [PubMed] [Google Scholar]
- Heath S. C., Bulfield G., Thompson R., Keightley P. D. Rates of change of genetic parameters of body weight in selected mouse lines. Genet Res. 1995 Aug;66(1):19–25. doi: 10.1017/s0016672300034352. [DOI] [PubMed] [Google Scholar]
- Horvat S., Medrano J. F. Interval mapping of high growth (hg), a major locus that increases weight gain in mice. Genetics. 1995 Apr;139(4):1737–1748. doi: 10.1093/genetics/139.4.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keightley P. D., Bulfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet Res. 1993 Dec;62(3):195–203. doi: 10.1017/s0016672300031906. [DOI] [PubMed] [Google Scholar]
- Lai C., Lyman R. F., Long A. D., Langley C. H., Mackay T. F. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science. 1994 Dec 9;266(5191):1697–1702. doi: 10.1126/science.7992053. [DOI] [PubMed] [Google Scholar]
- Long A. D., Mullaney S. L., Reid L. A., Fry J. D., Langley C. H., Mackay T. F. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1273–1291. doi: 10.1093/genetics/139.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackay T. F., Langley C. H. Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature. 1990 Nov 1;348(6296):64–66. doi: 10.1038/348064a0. [DOI] [PubMed] [Google Scholar]
- Nuzhdin S. V., Keightley P. D., Pasyukova E. G. The use of retrotransposons as markers for mapping genes responsible for fitness differences between related Drosophila melanogaster strains. Genet Res. 1993 Oct;62(2):125–131. doi: 10.1017/s0016672300031712. [DOI] [PubMed] [Google Scholar]
- Santiago E., Caballero A. Effective size of populations under selection. Genetics. 1995 Feb;139(2):1013–1030. doi: 10.1093/genetics/139.2.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sax K. The Association of Size Differences with Seed-Coat Pattern and Pigmentation in PHASEOLUS VULGARIS. Genetics. 1923 Nov;8(6):552–560. doi: 10.1093/genetics/8.6.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver L. M. The peculiar journey of a selfish chromosome: mouse t haplotypes and meiotic drive. Trends Genet. 1993 Jul;9(7):250–254. doi: 10.1016/0168-9525(93)90090-5. [DOI] [PubMed] [Google Scholar]
- Winkelman D. C., Hodgetts R. B. RFLPs for somatotropic genes identify quantitative trait loci for growth in mice. Genetics. 1992 Aug;131(4):929–937. doi: 10.1093/genetics/131.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]