Skip to main content
Genetics logoLink to Genetics
. 1996 Jan;142(1):51–63. doi: 10.1093/genetics/142.1.51

Removal of a Mig1p Binding Site Converts a Mal63 Constitutive Mutant Derived by Interchromosomal Gene Conversion to Glucose Insensitivity

J Wang 1, R Needleman 1
PMCID: PMC1206964  PMID: 8770584

Abstract

Maltose fermenting strains of Saccharomyces cerevisiae have one or more complex loci called MAL. Each locus comprises at least three genes: MALx1 encodes maltose permease, MALx2 encodes maltase, and MALx3 encodes an activator of MALx1 and MALx2 (x denotes one of five MAL loci, with x = 1, 2, 3, 4, or 6). The MAL43(c) allele is constitutive and relatively insensitive to glucose repression. To understand better this unique phenotype of MAL43(c), we have isolated several MAL63(c) constitutive mutants from a MAL6 strain. All constitutive mutants remain glucose repressible, and all have multiple amino acid substitutions in the C-terminal region, now making this region of Mal63(c)p similar to that of Mal43(c)p. These changes have been generated by gene conversion, which transfers DNA from the telomeres of chromosome II and chromosome III or XVI to chromosome VIII (MAL6). The removal of a Mig1p binding site from the MAL63(c) promoter leads to a loss of glucose repression, imitating the phenotype of MAL43(c). Conversely, addition of a Mig1p binding site to the promoter of MAL43(c) converts it to glucose sensitivity. Mig1p modulation of Mal63p and Mal43p expression therefore plays a substantial role in glucose repression of the MAL genes.

Full Text

The Full Text of this article is available as a PDF (4.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Amakasu H., Suzuki Y., Nishizawa M., Fukasawa T. Isolation and characterization of SGE1: a yeast gene that partially suppresses the gal11 mutation in multiple copies. Genetics. 1993 Jul;134(3):675–683. doi: 10.1093/genetics/134.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becker D. M., Guarente L. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 1991;194:182–187. doi: 10.1016/0076-6879(91)94015-5. [DOI] [PubMed] [Google Scholar]
  4. Chang Y. S., Dubin R. A., Perkins E., Forrest D., Michels C. A., Needleman R. B. MAL63 codes for a positive regulator of maltose fermentation in Saccharomyces cerevisiae. Curr Genet. 1988 Sep;14(3):201–209. doi: 10.1007/BF00376740. [DOI] [PubMed] [Google Scholar]
  5. Charron M. J., Michels C. A. The constitutive, glucose-repression-insensitive mutation of the yeast MAL4 locus is an alteration of the MAL43 gene. Genetics. 1987 May;116(1):23–31. doi: 10.1093/genetics/116.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Charron M. J., Read E., Haut S. R., Michels C. A. Molecular evolution of the telomere-associated MAL loci of Saccharomyces. Genetics. 1989 Jun;122(2):307–316. doi: 10.1093/genetics/122.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cook W. J., Chase D., Audino D. C., Denis C. L. Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Mol Cell Biol. 1994 Jan;14(1):629–640. doi: 10.1128/mcb.14.1.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dubin R. A., Charron M. J., Haut S. R., Needleman R. B., Michels C. A. Constitutive expression of the maltose fermentative enzymes in Saccharomyces carlsbergensis is dependent upon the mutational activation of a nonessential homolog of MAL63. Mol Cell Biol. 1988 Mar;8(3):1027–1035. doi: 10.1128/mcb.8.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ernst J. F., Stewart J. W., Sherman F. Formation of composite iso-cytochromes c by recombination between non-allelic genes of yeast. J Mol Biol. 1982 Nov 5;161(3):373–394. doi: 10.1016/0022-2836(82)90245-5. [DOI] [PubMed] [Google Scholar]
  10. Ernst J. F., Stewart J. W., Sherman F. The cyc1-11 mutation in yeast reverts by recombination with a nonallelic gene: composite genes determining the iso-cytochromes c. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6334–6338. doi: 10.1073/pnas.78.10.6334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fasullo M. T., Davis R. W. Recombinational substrates designed to study recombination between unique and repetitive sequences in vivo. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6215–6219. doi: 10.1073/pnas.84.17.6215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoffman C. S., Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. doi: 10.1016/0378-1119(87)90131-4. [DOI] [PubMed] [Google Scholar]
  13. Khan N. A., Zimmermann F. K., Eaton N. R. Genetic and biochemical evidence of sucrose fermentation by maltase in yeast. Mol Gen Genet. 1973;123(1):43–50. doi: 10.1007/BF00282987. [DOI] [PubMed] [Google Scholar]
  14. Kim J., Michels C. A. The MAL63 gene of Saccharomyces encodes a cysteine-zinc finger protein. Curr Genet. 1988 Oct;14(4):319–323. doi: 10.1007/BF00419988. [DOI] [PubMed] [Google Scholar]
  15. Louis E. J., Haber J. E. Mitotic recombination among subtelomeric Y' repeats in Saccharomyces cerevisiae. Genetics. 1990 Mar;124(3):547–559. doi: 10.1093/genetics/124.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Louis E. J., Haber J. E. The subtelomeric Y' repeat family in Saccharomyces cerevisiae: an experimental system for repeated sequence evolution. Genetics. 1990 Mar;124(3):533–545. doi: 10.1093/genetics/124.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Louis E. J., Naumova E. S., Lee A., Naumov G., Haber J. E. The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics. 1994 Mar;136(3):789–802. doi: 10.1093/genetics/136.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lucero P., Herweijer M., Lagunas R. Catabolite inactivation of the yeast maltose transporter is due to proteolysis. FEBS Lett. 1993 Oct 25;333(1-2):165–168. doi: 10.1016/0014-5793(93)80397-d. [DOI] [PubMed] [Google Scholar]
  19. Lundin M., Nehlin J. O., Ronne H. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol. 1994 Mar;14(3):1979–1985. doi: 10.1128/mcb.14.3.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ma J., Ptashne M. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell. 1987 Mar 13;48(5):847–853. doi: 10.1016/0092-8674(87)90081-x. [DOI] [PubMed] [Google Scholar]
  21. Naumov G. I., Naumova E. S., Michels C. A. Genetic variation of the repeated MAL loci in natural populations of Saccharomyces cerevisiae and Saccharomyces paradoxus. Genetics. 1994 Mar;136(3):803–812. doi: 10.1093/genetics/136.3.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Naumov G., Naumova E., Turakainen H., Suominen P., Korhola M. Polymeric genes MEL8, MEL9 and MEL10--new members of alpha-galactosidase gene family in Saccharomyces cerevisiae. Curr Genet. 1991 Sep;20(4):269–276. doi: 10.1007/BF00318514. [DOI] [PubMed] [Google Scholar]
  23. Naumov G., Turakainen H., Naumova E., Aho S., Korhola M. A new family of polymorphic genes in Saccharomyces cerevisiae: alpha-galactosidase genes MEL1-MEL7. Mol Gen Genet. 1990 Oct;224(1):119–128. doi: 10.1007/BF00259458. [DOI] [PubMed] [Google Scholar]
  24. Needleman R. B., Kaback D. B., Dubin R. A., Perkins E. L., Rosenberg N. G., Sutherland K. A., Forrest D. B., Michels C. A. MAL6 of Saccharomyces: a complex genetic locus containing three genes required for maltose fermentation. Proc Natl Acad Sci U S A. 1984 May;81(9):2811–2815. doi: 10.1073/pnas.81.9.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Needleman R. B., Michels C. Repeated family of genes controlling maltose fermentation in Saccharomyces carlsbergensis. Mol Cell Biol. 1983 May;3(5):796–802. doi: 10.1128/mcb.3.5.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Needleman R. Control of maltase synthesis in yeast. Mol Microbiol. 1991 Sep;5(9):2079–2084. doi: 10.1111/j.1365-2958.1991.tb02136.x. [DOI] [PubMed] [Google Scholar]
  27. Needleman R., Eaton N. R. Selection of yeast mutants constitutive for maltase synthesis. Mol Gen Genet. 1974;133(2):135–140. doi: 10.1007/BF00264834. [DOI] [PubMed] [Google Scholar]
  28. Nehlin J. O., Ronne H. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. EMBO J. 1990 Sep;9(9):2891–2898. doi: 10.1002/j.1460-2075.1990.tb07479.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ni B. F., Needleman R. B. Identification of the upstream activating sequence of MAL and the binding sites for the MAL63 activator of Saccharomyces cerevisiae. Mol Cell Biol. 1990 Jul;10(7):3797–3800. doi: 10.1128/mcb.10.7.3797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Perkins E. L., Needleman R. B. MAL64c is a global regulator of alpha-glucoside fermentation: identification of a new gene involved in melezitose fermentation. Curr Genet. 1988 May;13(5):369–375. doi: 10.1007/BF00365657. [DOI] [PubMed] [Google Scholar]
  31. Rodicio R. Insertion of non-homologous DNA sequences into a regulatory gene cause a constitutive maltase synthesis in yeast. Curr Genet. 1986;11(3):235–241. doi: 10.1007/BF00420612. [DOI] [PubMed] [Google Scholar]
  32. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sirenko O. I., Ni B., Needleman R. B. Purification and binding properties of the Mal63p activator of Saccharomyces cerevisiae. Curr Genet. 1995 May;27(6):509–516. doi: 10.1007/BF00314440. [DOI] [PubMed] [Google Scholar]
  34. Treitel M. A., Carlson M. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3132–3136. doi: 10.1073/pnas.92.8.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. WINGE O., ROBERTS C. The polymeric genes for maltose fermentation in yeasts, and their mutability. Cr Trav Lab Carlsberg Ser Physiol. 1950;25(2):35–89. [PubMed] [Google Scholar]
  36. Zimmermann F. K., Eaton N. R. Genetics of induction and catabolite repression of Maltese synthesis in Saccharomyces cerevisiae. Mol Gen Genet. 1974;134(3):261–272. doi: 10.1007/BF00267720. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES