Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Genetics logoLink to Genetics
. 1996 Feb;142(2):371–381. doi: 10.1093/genetics/142.2.371

In Vivo Analysis of Folate Coenzymes and Their Compartmentation in Saccharomyces Cerevisiae

J B McNeil 1, A L Bognar 1, R E Pearlman 1
PMCID: PMC1206972  PMID: 8852837

Abstract

In eukaryotes, enzymes responsible for the interconversion of one-carbon units exist in parallel in both mitochondria and the cytoplasm. Strains of Saccharomyces cerevisiae were constructed that possess combinations of gene disruptions at the SHM1 [mitochondrial serine hydroxymethyltransferase (SHMTm)], SHM2 [cytoplasmic SHMT (SHMTc)], MIS1 [mitochondrial C(1)-tetrahydrofolate synthase (C(1)-THFSm)], ADE3 [cytoplasmic C(1)-THF synthase (C(1)-THFSc)], GCV1 [glycine cleavage system (GCV) protein T], and the GLY1 (involved in glycine synthesis) loci. Analysis of the in vivo growth characteristics and phenotypes was used to determine the contribution to cytoplasmic nucleic acid and amino acid anabolism by the mitochondrial enzymes involved in the interconversion of folate coenzymes. The data indicate that mitochondria transport formate to the cytoplasmic compartment and mitochondrial synthesis of formate appears to rely primarily on SHMTm rather than the glycine cleavage system. The glycine cleavage system and SHMTm cooperate to specifically synthesize serine. With the inactivation of SHM1, however, the glycine cleavage system can make an observable contribution to the level of mitochondrial formate. Inactivation of SHM1, SHM2 and ADE3 is required to render yeast auxotrophic for TMP and methionine, suggesting that TMP synthesized in mitochondria may be available to the cytoplasmic compartment.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appling D. R. Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB J. 1991 Sep;5(12):2645–2651. doi: 10.1096/fasebj.5.12.1916088. [DOI] [PubMed] [Google Scholar]
  2. Barclay B. J., Kunz B. A., Little J. G., Haynes R. H. Genetic and biochemical consequences of thymidylate stress. Can J Biochem. 1982 Mar;60(3):172–184. doi: 10.1139/o82-023. [DOI] [PubMed] [Google Scholar]
  3. Barlowe C. K., Appling D. R. In vitro evidence for the involvement of mitochondrial folate metabolism in the supply of cytoplasmic one-carbon units. Biofactors. 1988 Jul;1(2):171–176. [PubMed] [Google Scholar]
  4. Broach J. R., Strathern J. N., Hicks J. B. Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene. 1979 Dec;8(1):121–133. doi: 10.1016/0378-1119(79)90012-x. [DOI] [PubMed] [Google Scholar]
  5. Caperelli C. A., Benkovic P. A., Chettur G., Benkovic S. J. Purification of a complex catalyzing folate cofactor synthesis and transformylation in de novo purine biosynthesis. J Biol Chem. 1980 Mar 10;255(5):1885–1890. [PubMed] [Google Scholar]
  6. Caperelli C. A., Chettur G., Lin L. Y., Benkovic S. J. Purfication of glycineamide ribonucleotide transformylase. Biochem Biophys Res Commun. 1978 May 30;82(2):403–410. doi: 10.1016/0006-291x(78)90890-2. [DOI] [PubMed] [Google Scholar]
  7. Carlson M., Botstein D. Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase. Cell. 1982 Jan;28(1):145–154. doi: 10.1016/0092-8674(82)90384-1. [DOI] [PubMed] [Google Scholar]
  8. Chen D. C., Yang B. C., Kuo T. T. One-step transformation of yeast in stationary phase. Curr Genet. 1992 Jan;21(1):83–84. doi: 10.1007/BF00318659. [DOI] [PubMed] [Google Scholar]
  9. Cybulski R. L., Fisher R. R. Uptake of oxidized folates by rat liver mitochondria. Biochim Biophys Acta. 1981 Aug 20;646(2):329–333. doi: 10.1016/0005-2736(81)90339-4. [DOI] [PubMed] [Google Scholar]
  10. Gadsden M. H., McIntosh E. M., Game J. C., Wilson P. J., Haynes R. H. dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae. EMBO J. 1993 Nov;12(11):4425–4431. doi: 10.1002/j.1460-2075.1993.tb06127.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goyette P., Frosst P., Rosenblatt D. S., Rozen R. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency. Am J Hum Genet. 1995 May;56(5):1052–1059. [PMC free article] [PubMed] [Google Scholar]
  12. Horne D. W., Patterson D., Cook R. J. Effect of nitrous oxide inactivation of vitamin B12-dependent methionine synthetase on the subcellular distribution of folate coenzymes in rat liver. Arch Biochem Biophys. 1989 May 1;270(2):729–733. doi: 10.1016/0003-9861(89)90556-0. [DOI] [PubMed] [Google Scholar]
  13. Huang T., Barclay B. J., Kalman T. I., von Borstel R. C., Hastings P. J. The phenotype of a dihydrofolate reductase mutant of Saccharomyces cerevisiae. Gene. 1992 Nov 2;121(1):167–171. doi: 10.1016/0378-1119(92)90177-q. [DOI] [PubMed] [Google Scholar]
  14. Jones E. W. Bipartite structure of the ade3 locus of Saccharomyces cerevisiae. Genetics. 1977 Feb;85(2):209–223. doi: 10.1093/genetics/85.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones E. W., Magasanik B. Phosphoribosyl-5-amino-4-imidazolecarboxamide formyltransferase activity in the adenine-histidine auxotroph AD-3 of S. cerevisiae. Biochem Biophys Res Commun. 1967 Nov 30;29(4):600–604. doi: 10.1016/0006-291x(67)90528-1. [DOI] [PubMed] [Google Scholar]
  16. Lam K. B., Jones E. W. Mutations affecting levels of tetrahydrofolate interconversion enzymes in Saccharomyces cerevisiae. I. Enzyme levels in ade3-41 and ADE15, a dominant adenine auxotroph. Mol Gen Genet. 1973 Jul 2;123(3):199–208. doi: 10.1007/BF00271238. [DOI] [PubMed] [Google Scholar]
  17. Lazowska J., Luzzati M. Biochemical deficiency associated with ad3 mutations in saccharomyces cerevisiae. I. Levels of three enzymes of tetrahydrofolate metabolism. Biochem Biophys Res Commun. 1970 Apr 8;39(1):34–39. doi: 10.1016/0006-291x(70)90753-9. [DOI] [PubMed] [Google Scholar]
  18. Lazowska J., Luzzati M. Biochemical deficiency associated with ad3 mutations in saccharomyces cerevisiae. II. Separation of two forms of methylenetetrahydrofolate dehydrogenase. Biochem Biophys Res Commun. 1970 Apr 8;39(1):40–45. doi: 10.1016/0006-291x(70)90754-0. [DOI] [PubMed] [Google Scholar]
  19. Lin B. F., Shane B. Expression of Escherichia coli folylpolyglutamate synthetase in the Chinese hamster ovary cell mitochondrion. J Biol Chem. 1994 Apr 1;269(13):9705–9713. [PubMed] [Google Scholar]
  20. Little J. G., Haynes R. H. Isolation and characterization of yeast mutants auxotrophic for 2'-deoxythymidine 5'-monophosphate. Mol Gen Genet. 1979 Jan 10;168(2):141–151. doi: 10.1007/BF00431440. [DOI] [PubMed] [Google Scholar]
  21. Matthews R. G. Methylenetetrahydrofolate reductase from pig liver. Methods Enzymol. 1986;122:372–381. doi: 10.1016/0076-6879(86)22196-5. [DOI] [PubMed] [Google Scholar]
  22. McKenzie K. Q., Jones E. W. Mutants of formyltetrahydrofolate interconversion pathway of Saccharomyces cerevisiae. Genetics. 1977 May;86(1):85–102. doi: 10.1093/genetics/86.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McNeil J. B. Functional characterization of a pyrimidine-rich element in the 5'-noncoding region of the yeast iso-1-cytochrome c gene. Mol Cell Biol. 1988 Mar;8(3):1045–1054. doi: 10.1128/mcb.8.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McNeil J. B., McIntosh E. M., Taylor B. V., Zhang F. R., Tang S., Bognar A. L. Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine. J Biol Chem. 1994 Mar 25;269(12):9155–9165. [PubMed] [Google Scholar]
  25. McNeil J. B., Smith M. Saccharomyces cerevisiae CYC1 mRNA 5'-end positioning: analysis by in vitro mutagenesis, using synthetic duplexes with random mismatch base pairs. Mol Cell Biol. 1985 Dec;5(12):3545–3551. doi: 10.1128/mcb.5.12.3545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mortimer R. K., Hawthorne D. C. Genetic mapping in Saccharomyces. Genetics. 1966 Jan;53(1):165–173. doi: 10.1093/genetics/53.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pasternack L. B., Laude D. A., Jr, Appling D. R. 13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae. Biochemistry. 1992 Sep 22;31(37):8713–8719. doi: 10.1021/bi00152a005. [DOI] [PubMed] [Google Scholar]
  28. Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
  29. Schirch L. Serine hydroxymethyltransferase. Adv Enzymol Relat Areas Mol Biol. 1982;53:83–112. doi: 10.1002/9780470122983.ch3. [DOI] [PubMed] [Google Scholar]
  30. Schirch V., Strong W. B. Interaction of folylpolyglutamates with enzymes in one-carbon metabolism. Arch Biochem Biophys. 1989 Mar;269(2):371–380. doi: 10.1016/0003-9861(89)90120-3. [DOI] [PubMed] [Google Scholar]
  31. Shannon K. W., Rabinowitz J. C. Isolation and characterization of the Saccharomyces cerevisiae MIS1 gene encoding mitochondrial C1-tetrahydrofolate synthase. J Biol Chem. 1988 Jun 5;263(16):7717–7725. [PubMed] [Google Scholar]
  32. Smith G. K., Mueller W. T., Wasserman G. F., Taylor W. D., Benkovic S. J. Characterization of the enzyme complex involving the folate-requiring enzymes of de novo purine biosynthesis. Biochemistry. 1980 Sep 2;19(18):4313–4321. doi: 10.1021/bi00559a026. [DOI] [PubMed] [Google Scholar]
  33. Srere P. A. Complexes of sequential metabolic enzymes. Annu Rev Biochem. 1987;56:89–124. doi: 10.1146/annurev.bi.56.070187.000513. [DOI] [PubMed] [Google Scholar]
  34. Strathern J. N., Higgins D. R. Recovery of plasmids from yeast into Escherichia coli: shuttle vectors. Methods Enzymol. 1991;194:319–329. doi: 10.1016/0076-6879(91)94024-7. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES