Skip to main content
Genetics logoLink to Genetics
. 1996 Feb;142(2):579–585. doi: 10.1093/genetics/142.2.579

Copia-, Gypsy- and Line-like Retrotransposon Fragments in the Mitochondrial Genome of Arabidopsis Thaliana

V Knoop 1, M Unseld 1, J Marienfeld 1, P Brandt 1, S Sunkel 1, H Ullrich 1, A Brennicke 1
PMCID: PMC1206990  PMID: 8852855

Abstract

Several retrotransposon fragments are integrated in the mitochondrial genome of Arabidopsis thaliana. These insertions are derived from all three classes of nuclear retrotransposons, the Ty1/copia-, Ty3/gypsy- and non-LTR/LINE-families. Members of the Ty3/gypsy group of elements have not yet been identified in the nuclear genome of Arabidopsis. The varying degrees of similarity with nuclear elements and the dispersed locations of the sequences in the mitochondrial genome suggest numerous independent transfer-insertion events in the evolutionary history of this plant mitochondrial genome. Overall, we estimate remnants of retrotransposons to cover >/=5% of the mitochondrial genome in Arabidopsis.

Full Text

The Full Text of this article is available as a PDF (6.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casacuberta J. M., Vernhettes S., Grandbastien M. A. Sequence variability within the tobacco retrotransposon Tnt1 population. EMBO J. 1995 Jun 1;14(11):2670–2678. doi: 10.1002/j.1460-2075.1995.tb07265.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Grandbastien M. A. Retroelements in higher plants. Trends Genet. 1992 Mar;8(3):103–108. doi: 10.1016/0168-9525(92)90198-d. [DOI] [PubMed] [Google Scholar]
  3. Klein M., Eckert-Ossenkopp U., Schmiedeberg I., Brandt P., Unseld M., Brennicke A., Schuster W. Physical mapping of the mitochondrial genome of Arabidopsis thaliana by cosmid and YAC clones. Plant J. 1994 Sep;6(3):447–455. doi: 10.1046/j.1365-313x.1994.06030447.x. [DOI] [PubMed] [Google Scholar]
  4. Konieczny A., Voytas D. F., Cummings M. P., Ausubel F. M. A superfamily of Arabidopsis thaliana retrotransposons. Genetics. 1991 Apr;127(4):801–809. doi: 10.1093/genetics/127.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Purugganan M. D., Wessler S. R. Molecular evolution of magellan, a maize Ty3/gypsy-like retrotransposon. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11674–11678. doi: 10.1073/pnas.91.24.11674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sentry J. W., Smyth D. R. An element with long terminal repeats and its variant arrangements in the genome of Lilium henryi. Mol Gen Genet. 1989 Jan;215(2):349–354. doi: 10.1007/BF00339741. [DOI] [PubMed] [Google Scholar]
  7. Voytas D. F., Ausubel F. M. A copia-like transposable element family in Arabidopsis thaliana. Nature. 1988 Nov 17;336(6196):242–244. doi: 10.1038/336242a0. [DOI] [PubMed] [Google Scholar]
  8. White S. E., Habera L. F., Wessler S. R. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11792–11796. doi: 10.1073/pnas.91.25.11792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wright D. A., Ke N., Smalle J., Hauge B. M., Goodman H. M., Voytas D. F. Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana. Genetics. 1996 Feb;142(2):569–578. doi: 10.1093/genetics/142.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Xiong Y., Eickbush T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990 Oct;9(10):3353–3362. doi: 10.1002/j.1460-2075.1990.tb07536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES