Skip to main content
Genetics logoLink to Genetics
. 1996 Feb;142(2):603–618. doi: 10.1093/genetics/142.2.603

DNA Sequence Analyses Support the Role of Interrupted Gap Repair in the Origin of Internal Deletions of the Maize Transposon, Mudr

A P Hsia 1, P S Schnable 1
PMCID: PMC1206992  PMID: 8852857

Abstract

Previous research has demonstrated that the autonomous Cy transposon can activate the excision of Mu transposons. To determine the relationship between Cy and the more recently described autonomous Mu transposon, MuDR, a Cy transposon inserted at the mutable a1 allele, a1-m5216, was isolated and cloned. DNA sequence analyses established that this Cy insertion is identical to MuDR (Mu9, GenBank accession No.: m76978.gb_pl). Therefore, Cy will henceforth be termed MuDR:Cy. Defective derivatives of MuDR:Cy were isolated that had lost their capacity to activate their own excision or the excision of a Mu7 transposon. Most of these derivatives are nonautonomous transposons because they can excise, but only in the presence of unlinked MuDR:Cy transposons. Physical mapping and DNA sequence analyses have established that six of these defective derivatives carry internal deletions. It has been proposed previously that such deletions arise via interrupted gap repair. The DNA sequences of the break points associated with all four sequenced deletions are consistent with this model. The finding that three of the excision-defective derivatives carry deletions that disrupt the coding region of the mudrA (but not the mudrB) transcript supports the view that mudrA plays a role in the excision of Mu transposons.

Full Text

The Full Text of this article is available as a PDF (5.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Britt A. B., Walbot V. Germinal and somatic products of Mu1 excision from the Bronze-1 gene of Zea mays. Mol Gen Genet. 1991 Jun;227(2):267–276. doi: 10.1007/BF00259680. [DOI] [PubMed] [Google Scholar]
  2. Chandler V. L., Hardeman K. J. The Mu elements of Zea mays. Adv Genet. 1992;30:77–122. doi: 10.1016/s0065-2660(08)60319-3. [DOI] [PubMed] [Google Scholar]
  3. Chomet P., Lisch D., Hardeman K. J., Chandler V. L., Freeling M. Identification of a regulatory transposon that controls the Mutator transposable element system in maize. Genetics. 1991 Sep;129(1):261–270. doi: 10.1093/genetics/129.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dooner H. K., Robbins T. P., Jorgensen R. A. Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet. 1991;25:173–199. doi: 10.1146/annurev.ge.25.120191.001133. [DOI] [PubMed] [Google Scholar]
  5. Eisen J. A., Benito M. I., Walbot V. Sequence similarity of putative transposases links the maize Mutator autonomous element and a group of bacterial insertion sequences. Nucleic Acids Res. 1994 Jul 11;22(13):2634–2636. doi: 10.1093/nar/22.13.2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Engels W. R., Johnson-Schlitz D. M., Eggleston W. B., Sved J. High-frequency P element loss in Drosophila is homolog dependent. Cell. 1990 Aug 10;62(3):515–525. doi: 10.1016/0092-8674(90)90016-8. [DOI] [PubMed] [Google Scholar]
  7. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  8. Gierl A., Saedler H., Peterson P. A. Maize transposable elements. Annu Rev Genet. 1989;23:71–85. doi: 10.1146/annurev.ge.23.120189.000443. [DOI] [PubMed] [Google Scholar]
  9. Greene B., Walko R., Hake S. Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics. 1994 Dec;138(4):1275–1285. doi: 10.1093/genetics/138.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hardeman K. J., Chandler V. L. Two maize genes are each targeted predominantly by distinct classes of Mu elements. Genetics. 1993 Dec;135(4):1141–1150. doi: 10.1093/genetics/135.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hershberger R. J., Benito M. I., Hardeman K. J., Warren C., Chandler V. L., Walbot V. Characterization of the major transcripts encoded by the regulatory MuDR transposable element of maize. Genetics. 1995 Jul;140(3):1087–1098. doi: 10.1093/genetics/140.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hershberger R. J., Warren C. A., Walbot V. Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10198–10202. doi: 10.1073/pnas.88.22.10198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. James M. G., Scanlon M. J., Qin M., Robertson D. S., Myers A. M. DNA sequence and transcript analysis of transposon MuA2, a regulator of Mutator transposable element activity in maize. Plant Mol Biol. 1993 Mar;21(6):1181–1185. doi: 10.1007/BF00023614. [DOI] [PubMed] [Google Scholar]
  14. Kurkulos M., Weinberg J. M., Roy D., Mount S. M. P element-mediated in vivo deletion analysis of white-apricot: deletions between direct repeats are strongly favored. Genetics. 1994 Mar;136(3):1001–1011. doi: 10.1093/genetics/136.3.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lisch D., Chomet P., Freeling M. Genetic characterization of the Mutator system in maize: behavior and regulation of Mu transposons in a minimal line. Genetics. 1995 Apr;139(4):1777–1796. doi: 10.1093/genetics/139.4.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martienssen R., Baron A. Coordinate suppression of mutations caused by Robertson's mutator transposons in maize. Genetics. 1994 Mar;136(3):1157–1170. doi: 10.1093/genetics/136.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Qin M. M., Robertson D. S., Ellingboe A. H. Cloning of the Mutator transposable element MuA2, a putative regulator of somatic mutability of the a1-Mum2 allele in maize. Genetics. 1991 Nov;129(3):845–854. doi: 10.1093/genetics/129.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Saedler H., Nevers P. Transposition in plants: a molecular model. EMBO J. 1985 Mar;4(3):585–590. doi: 10.1002/j.1460-2075.1985.tb03670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014–8018. doi: 10.1073/pnas.81.24.8014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schnable P. S., Peterson P. A., Saedler H. The bz-rcy allele of the Cy transposable element system of Zea mays contains a Mu-like element insertion. Mol Gen Genet. 1989 Jun;217(2-3):459–463. doi: 10.1007/BF02464917. [DOI] [PubMed] [Google Scholar]
  21. Schnable P. S., Peterson P. A. The Mutator-Related Cy Transposable Element of Zea Mays L. Behaves as a near-Mendelian Factor. Genetics. 1988 Oct;120(2):587–596. doi: 10.1093/genetics/120.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schwarz-Sommer Z., Shepherd N., Tacke E., Gierl A., Rohde W., Leclercq L., Mattes M., Berndtgen R., Peterson P. A., Saedler H. Influence of transposable elements on the structure and function of the A1 gene of Zea mays. EMBO J. 1987 Feb;6(2):287–294. doi: 10.1002/j.1460-2075.1987.tb04752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tsai C. Y., Nelson O. E. Starch-deficient maize mutant lacking adenosine dephosphate glucose pyrophosphorylase activity. Science. 1966 Jan 21;151(3708):341–343. doi: 10.1126/science.151.3708.341. [DOI] [PubMed] [Google Scholar]
  24. Walbot V. The Mutator transposable element family of maize. Genet Eng (N Y) 1991;13:1–37. doi: 10.1007/978-1-4615-3760-1_1. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES