Skip to main content
Genetics logoLink to Genetics
. 1996 Mar;142(3):879–892. doi: 10.1093/genetics/142.3.879

Molecular Characterization of Neurally Expressing Genes in the Para Sodium Channel Gene Cluster of Drosophila

C S Hong 1, B Ganetzky 1
PMCID: PMC1207025  PMID: 8849894

Abstract

To elucidate the mechanisms regulating expression of para, which encodes the major class of sodium channels in the Drosophila nervous system, we have tried to locate upstream cis-acting regulatory elements by mapping the transcriptional start site and analyzing the region immediately upstream of para in region 14D of the polytene chromosomes. From these studies, we have discovered that the region contains a cluster of neurally expressing genes. Here we report the molecular characterization of the genomic organization of the 14D region and the genes within this region, which are: calnexin (Cnx), actin related protein 14D (Arp14D), calcineurin A 14D (CnnA14D), and chromosome associated protein (Cap). The tight clustering of these genes, their neuronal expression patterns, and their potential functions related to expression, modulation, or regulation of sodium channels raise the possibility that these genes represent a functionally related group sharing some coordinate regulatory mechanism.

Full Text

The Full Text of this article is available as a PDF (8.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Arkhipova I. R. Promoter elements in Drosophila melanogaster revealed by sequence analysis. Genetics. 1995 Mar;139(3):1359–1369. doi: 10.1093/genetics/139.3.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown L., Chen M. X., Cohen P. T. Identification of a cDNA encoding a Drosophila calcium/calmodulin regulated protein phosphatase, which has its most abundant expression in the early embryo. FEBS Lett. 1994 Feb 14;339(1-2):124–128. doi: 10.1016/0014-5793(94)80398-6. [DOI] [PubMed] [Google Scholar]
  4. Cala S. E., Ulbright C., Kelley J. S., Jones L. R. Purification of a 90-kDa protein (Band VII) from cardiac sarcoplasmic reticulum. Identification as calnexin and localization of casein kinase II phosphorylation sites. J Biol Chem. 1993 Feb 5;268(4):2969–2975. [PubMed] [Google Scholar]
  5. Chuang P. T., Albertson D. G., Meyer B. J. DPY-27:a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell. 1994 Nov 4;79(3):459–474. doi: 10.1016/0092-8674(94)90255-0. [DOI] [PubMed] [Google Scholar]
  6. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Domdey H., Apostol B., Lin R. J., Newman A., Brody E., Abelson J. Lariat structures are in vivo intermediates in yeast pre-mRNA splicing. Cell. 1984 Dec;39(3 Pt 2):611–621. doi: 10.1016/0092-8674(84)90468-9. [DOI] [PubMed] [Google Scholar]
  9. Eveleth D. D., Marsh J. L. Evidence for evolutionary duplication of genes in the dopa decarboxylase region of Drosophila. Genetics. 1986 Oct;114(2):469–483. doi: 10.1093/genetics/114.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferrús A., Llamazares S., de la Pompa J. L., Tanouye M. A., Pongs O. Genetic analysis of the Shaker gene complex of Drosophila melanogaster. Genetics. 1990 Jun;125(2):383–398. doi: 10.1093/genetics/125.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frankel S., Heintzelman M. B., Artavanis-Tsakonas S., Mooseker M. S. Identification of a divergent actin-related protein in Drosophila. J Mol Biol. 1994 Jan 28;235(4):1351–1356. doi: 10.1006/jmbi.1994.1090. [DOI] [PubMed] [Google Scholar]
  12. Furia M., D'Avino P. P., Crispi S., Artiaco D., Polito L. C. Dense cluster of genes is located at the ecdysone-regulated 3C puff of Drosophila melanogaster. J Mol Biol. 1993 May 20;231(2):531–538. doi: 10.1006/jmbi.1993.1304. [DOI] [PubMed] [Google Scholar]
  13. Fyrberg C., Ryan L., Kenton M., Fyrberg E. Genes encoding actin-related proteins of Drosophila melanogaster. J Mol Biol. 1994 Aug 19;241(3):498–503. doi: 10.1006/jmbi.1994.1526. [DOI] [PubMed] [Google Scholar]
  14. Gilchrist J. S., Pierce G. N. Identification and purification of a calcium-binding protein in hepatic nuclear membranes. J Biol Chem. 1993 Feb 25;268(6):4291–4299. [PubMed] [Google Scholar]
  15. Guerini D., Montell C., Klee C. B. Molecular cloning and characterization of the genes encoding the two subunits of Drosophila melanogaster calcineurin. J Biol Chem. 1992 Nov 5;267(31):22542–22549. [PubMed] [Google Scholar]
  16. Hein J. Unified approach to alignment and phylogenies. Methods Enzymol. 1990;183:626–645. doi: 10.1016/0076-6879(90)83041-7. [DOI] [PubMed] [Google Scholar]
  17. Hirano T., Mitchison T. J. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell. 1994 Nov 4;79(3):449–458. doi: 10.1016/0092-8674(94)90254-2. [DOI] [PubMed] [Google Scholar]
  18. Hong C. S., Ganetzky B. Spatial and temporal expression patterns of two sodium channel genes in Drosophila. J Neurosci. 1994 Sep;14(9):5160–5169. doi: 10.1523/JNEUROSCI.14-09-05160.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hultmark D., Klemenz R., Gehring W. J. Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22. Cell. 1986 Feb 14;44(3):429–438. doi: 10.1016/0092-8674(86)90464-2. [DOI] [PubMed] [Google Scholar]
  20. Ishiguro H., Kim K. T., Joh T. H., Kim K. S. Neuron-specific expression of the human dopamine beta-hydroxylase gene requires both the cAMP-response element and a silencer region. J Biol Chem. 1993 Aug 25;268(24):17987–17994. [PubMed] [Google Scholar]
  21. Johnson W. A., Hirsh J. Binding of a Drosophila POU-domain protein to a sequence element regulating gene expression in specific dopaminergic neurons. Nature. 1990 Feb 1;343(6257):467–470. doi: 10.1038/343467a0. [DOI] [PubMed] [Google Scholar]
  22. Kernan M. J., Kuroda M. I., Kreber R., Baker B. S., Ganetzky B. napts, a mutation affecting sodium channel activity in Drosophila, is an allele of mle, a regulator of X chromosome transcription. Cell. 1991 Sep 6;66(5):949–959. doi: 10.1016/0092-8674(91)90440-a. [DOI] [PubMed] [Google Scholar]
  23. Knust E., Schrons H., Grawe F., Campos-Ortega J. A. Seven genes of the Enhancer of split complex of Drosophila melanogaster encode helix-loop-helix proteins. Genetics. 1992 Oct;132(2):505–518. doi: 10.1093/genetics/132.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lieberman D. N., Mody I. Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Nature. 1994 May 19;369(6477):235–239. doi: 10.1038/369235a0. [DOI] [PubMed] [Google Scholar]
  25. Liu J. P., Sim A. T., Robinson P. J. Calcineurin inhibition of dynamin I GTPase activity coupled to nerve terminal depolarization. Science. 1994 Aug 12;265(5174):970–973. doi: 10.1126/science.8052858. [DOI] [PubMed] [Google Scholar]
  26. Loughney K., Kreber R., Ganetzky B. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell. 1989 Sep 22;58(6):1143–1154. doi: 10.1016/0092-8674(89)90512-6. [DOI] [PubMed] [Google Scholar]
  27. Mandel G. Tissue-specific expression of the voltage-sensitive sodium channel. J Membr Biol. 1992 Feb;125(3):193–205. doi: 10.1007/BF00236433. [DOI] [PubMed] [Google Scholar]
  28. McLean J. R., Boswell R., O'Donnell J. Cloning and molecular characterization of a metabolic gene with development functions in Drosophila. I. Analysis of the head function of Punch. Genetics. 1990 Dec;126(4):1007–1019. doi: 10.1093/genetics/126.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mori N., Schoenherr C., Vandenbergh D. J., Anderson D. J. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron. 1992 Jul;9(1):45–54. doi: 10.1016/0896-6273(92)90219-4. [DOI] [PubMed] [Google Scholar]
  30. Muramatsu T., Kincaid R. L. Molecular cloning of a full-length cDNA encoding the catalytic subunit of human calmodulin-dependent protein phosphatase (calcineurin A alpha). Biochim Biophys Acta. 1993 Jul 28;1178(1):117–120. doi: 10.1016/0167-4889(93)90117-8. [DOI] [PubMed] [Google Scholar]
  31. Murphy B. J., Rossie S., De Jongh K. S., Catterall W. A. Identification of the sites of selective phosphorylation and dephosphorylation of the rat brain Na+ channel alpha subunit by cAMP-dependent protein kinase and phosphoprotein phosphatases. J Biol Chem. 1993 Dec 25;268(36):27355–27362. [PubMed] [Google Scholar]
  32. Ohsako S., Hayashi Y., Bunick D. Molecular cloning and sequencing of calnexin-t. An abundant male germ cell-specific calcium-binding protein of the endoplasmic reticulum. J Biol Chem. 1994 May 13;269(19):14140–14148. [PubMed] [Google Scholar]
  33. Palazzolo M. J., Hamilton B. A., Ding D. L., Martin C. H., Mead D. A., Mierendorf R. C., Raghavan K. V., Meyerowitz E. M., Lipshitz H. D. Phage lambda cDNA cloning vectors for subtractive hybridization, fusion-protein synthesis and Cre-loxP automatic plasmid subcloning. Gene. 1990 Mar 30;88(1):25–36. doi: 10.1016/0378-1119(90)90056-w. [DOI] [PubMed] [Google Scholar]
  34. Pause A., Sonenberg N. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 1992 Jul;11(7):2643–2654. doi: 10.1002/j.1460-2075.1992.tb05330.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pind S., Riordan J. R., Williams D. B. Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1994 Apr 29;269(17):12784–12788. [PubMed] [Google Scholar]
  36. Ramaswami M., Tanouye M. A. Two sodium-channel genes in Drosophila: implications for channel diversity. Proc Natl Acad Sci U S A. 1989 Mar;86(6):2079–2082. doi: 10.1073/pnas.86.6.2079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Robinson P. J., Liu J. P., Powell K. A., Fykse E. M., Südhof T. C. Phosphorylation of dynamin I and synaptic-vesicle recycling. Trends Neurosci. 1994 Aug;17(8):348–353. doi: 10.1016/0166-2236(94)90179-1. [DOI] [PubMed] [Google Scholar]
  38. Saitoh N., Goldberg I. G., Wood E. R., Earnshaw W. C. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J Cell Biol. 1994 Oct;127(2):303–318. doi: 10.1083/jcb.127.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Salkoff L., Butler A., Wei A., Scavarda N., Giffen K., Ifune C., Goodman R., Mandel G. Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. Science. 1987 Aug 14;237(4816):744–749. doi: 10.1126/science.2441469. [DOI] [PubMed] [Google Scholar]
  40. Scholnick S. B., Bray S. J., Morgan B. A., McCormick C. A., Hirsh J. CNS and hypoderm regulatory elements of the Drosophila melanogaster dopa decarboxylase gene. Science. 1986 Nov 21;234(4779):998–1002. doi: 10.1126/science.3095924. [DOI] [PubMed] [Google Scholar]
  41. Schreiber K. L., Bell M. P., Huntoon C. J., Rajagopalan S., Brenner M. B., McKean D. J. Class II histocompatibility molecules associate with calnexin during assembly in the endoplasmic reticulum. Int Immunol. 1994 Jan;6(1):101–111. doi: 10.1093/intimm/6.1.101. [DOI] [PubMed] [Google Scholar]
  42. Schreiber S. L. Immunophilin-sensitive protein phosphatase action in cell signaling pathways. Cell. 1992 Aug 7;70(3):365–368. doi: 10.1016/0092-8674(92)90158-9. [DOI] [PubMed] [Google Scholar]
  43. Schroer T. A., Fyrberg E., Cooper J. A., Waterston R. H., Helfman D., Pollard T. D., Meyer D. I. Actin-related protein nomenclature and classification. J Cell Biol. 1994 Dec;127(6 Pt 2):1777–1778. doi: 10.1083/jcb.127.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schwob E., Martin R. P. New yeast actin-like gene required late in the cell cycle. Nature. 1992 Jan 9;355(6356):179–182. doi: 10.1038/355179a0. [DOI] [PubMed] [Google Scholar]
  45. Smith M. J., Koch G. L. Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J. 1989 Dec 1;8(12):3581–3586. doi: 10.1002/j.1460-2075.1989.tb08530.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Smith M. J. Nucleotide sequence of a Drosophila melanogaster gene encoding a calreticulin homologue. DNA Seq. 1992;3(4):247–250. doi: 10.3109/10425179209034025. [DOI] [PubMed] [Google Scholar]
  47. Srinivasan Y., Lewallen M., Angelides K. J. Mapping the binding site on ankyrin for the voltage-dependent sodium channel from brain. J Biol Chem. 1992 Apr 15;267(11):7483–7489. [PubMed] [Google Scholar]
  48. Stathakis D. G., Pentz E. S., Freeman M. E., Kullman J., Hankins G. R., Pearlson N. J., Wright T. R. The genetic and molecular organization of the Dopa decarboxylase gene cluster of Drosophila melanogaster. Genetics. 1995 Oct;141(2):629–655. doi: 10.1093/genetics/141.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Stern M., Kreber R., Ganetzky B. Dosage effects of a Drosophila sodium channel gene on behavior and axonal excitability. Genetics. 1990 Jan;124(1):133–143. doi: 10.1093/genetics/124.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Strunnikov A. V., Hogan E., Koshland D. SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev. 1995 Mar 1;9(5):587–599. doi: 10.1101/gad.9.5.587. [DOI] [PubMed] [Google Scholar]
  51. Surdej P., Got C., Miassod R. Developmental expression pattern of a 800 kb DNA continuum cloned from the Drosophila X chromosome 14B-15B region. Biol Cell. 1990;68(2):105–118. doi: 10.1016/0248-4900(90)90295-e. [DOI] [PubMed] [Google Scholar]
  52. Thackeray J. R., Ganetzky B. Conserved alternative splicing patterns and splicing signals in the Drosophila sodium channel gene para. Genetics. 1995 Sep;141(1):203–214. doi: 10.1093/genetics/141.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Thackeray J. R., Ganetzky B. Developmentally regulated alternative splicing generates a complex array of Drosophila para sodium channel isoforms. J Neurosci. 1994 May;14(5 Pt 1):2569–2578. doi: 10.1523/JNEUROSCI.14-05-02569.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Thummel C. S., Boulet A. M., Lipshitz H. D. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene. 1988 Dec 30;74(2):445–456. doi: 10.1016/0378-1119(88)90177-1. [DOI] [PubMed] [Google Scholar]
  55. Wada I., Rindress D., Cameron P. H., Ou W. J., Doherty J. J., 2nd, Louvard D., Bell A. W., Dignard D., Thomas D. Y., Bergeron J. J. SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem. 1991 Oct 15;266(29):19599–19610. [PubMed] [Google Scholar]
  56. Watanabe D., Yamada K., Nishina Y., Tajima Y., Koshimizu U., Nagata A., Nishimune Y. Molecular cloning of a novel Ca(2+)-binding protein (calmegin) specifically expressed during male meiotic germ cell development. J Biol Chem. 1994 Mar 11;269(10):7744–7749. [PubMed] [Google Scholar]
  57. Wright T. R. The genetic and molecular organization of the dense cluster of functionally related, vital genes in the DOPA decarboxylase region of the Drosophila melanogaster genome. Results Probl Cell Differ. 1987;14:95–120. doi: 10.1007/978-3-540-47783-9_7. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES