Abstract
The bovine Growth Hormone gene (bGH) is an attractive candidate gene for milk production in cattle. Single-strand conformation polymorphisms at bGH were identified and used to define haplotype configurations at this gene in the Israeli Holstein dairy cattle population (Bos taurus) and in the parent animals of the International Bovine Reference Family Panel (a collection of B. taurus and B. indicus crosses). B. taurus and B. indicus haplotypes at the bGH gene differed qualitatively, confirming the previously proposed long evolutionary separation of these cattle subraces. Only a small number of bGH haplotypes were present in the Israel Holstein population. One of the haplotypes, apparently of B. indicus origin, was found to have a highly significant positive effect on milk protein percentage. This illustrates the utility of the haplotype approach for uncovering candidate gene involvement in quantitative genetic variation in agricultural populations. The strong effect of an indicine haplotype in a taurine background raises the possibility that indicine alleles at other candidate genes may comprise a genetic resource for improvement of taurine populations. It is proposed that haplotype analysis may be a useful adjunct to measures of genetic distance for evaluating rare breeds with respect to gene conservation.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barendse W., Armitage S. M., Kossarek L. M., Shalom A., Kirkpatrick B. W., Ryan A. M., Clayton D., Li L., Neibergs H. L., Zhang N. A genetic linkage map of the bovine genome. Nat Genet. 1994 Mar;6(3):227–235. doi: 10.1038/ng0394-227. [DOI] [PubMed] [Google Scholar]
- Bovenhuis H., Weller J. I. Mapping and analysis of dairy cattle quantitative trait loci by maximum likelihood methodology using milk protein genes as genetic markers. Genetics. 1994 May;137(1):267–280. doi: 10.1093/genetics/137.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collier R. J., McNamara J. P., Wallace C. R., Dehoff M. H. A review of endocrine regulation of metabolism during lactation. J Anim Sci. 1984 Aug;59(2):498–510. doi: 10.2527/jas1984.592498x. [DOI] [PubMed] [Google Scholar]
- Gordon D. F., Quick D. P., Erwin C. R., Donelson J. E., Maurer R. A. Nucleotide sequence of the bovine growth hormone chromosomal gene. Mol Cell Endocrinol. 1983 Nov;33(1):81–95. doi: 10.1016/0303-7207(83)90058-8. [DOI] [PubMed] [Google Scholar]
- Lai C., Lyman R. F., Long A. D., Langley C. H., Mackay T. F. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science. 1994 Dec 9;266(5191):1697–1702. doi: 10.1126/science.7992053. [DOI] [PubMed] [Google Scholar]
- Lande R., Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics. 1990 Mar;124(3):743–756. doi: 10.1093/genetics/124.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loftus R. T., MacHugh D. E., Bradley D. G., Sharp P. M., Cunningham P. Evidence for two independent domestications of cattle. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2757–2761. doi: 10.1073/pnas.91.7.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Machugh D. E., Loftus R. T., Bradley D. G., Sharp P. M., Cunningham P. Microsatellite DNA variation within and among European cattle breeds. Proc Biol Sci. 1994 Apr 22;256(1345):25–31. doi: 10.1098/rspb.1994.0044. [DOI] [PubMed] [Google Scholar]
- Mackay T. F., Langley C. H. Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature. 1990 Nov 1;348(6296):64–66. doi: 10.1038/348064a0. [DOI] [PubMed] [Google Scholar]
- Rychlik W., Rhoads R. E. A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 1989 Nov 11;17(21):8543–8551. doi: 10.1093/nar/17.21.8543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheffield V. C., Beck J. S., Kwitek A. E., Sandstrom D. W., Stone E. M. The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics. 1993 May;16(2):325–332. doi: 10.1006/geno.1993.1193. [DOI] [PubMed] [Google Scholar]
- Stengård J. H., Zerba K. E., Pekkanen J., Ehnholm C., Nissinen A., Sing C. F. Apolipoprotein E polymorphism predicts death from coronary heart disease in a longitudinal study of elderly Finnish men. Circulation. 1995 Jan 15;91(2):265–269. doi: 10.1161/01.cir.91.2.265. [DOI] [PubMed] [Google Scholar]
- Wyman A. R., White R. A highly polymorphic locus in human DNA. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6754–6758. doi: 10.1073/pnas.77.11.6754. [DOI] [PMC free article] [PubMed] [Google Scholar]