Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 Aug;96(2):507–516. doi: 10.1042/bj0960507

The activities of nicotinamide mononucleotied adenylyltransferase and of nicotinamide–adenine dinucleotide kinase in the livers of rats subjected to different hormonal treatments

A L Greenbaum 1,2, J B Clark 1,2, Patricia McLean 1,2
PMCID: PMC1207067  PMID: 4378708

Abstract

1. The activities of NMN adenylyltransferase and of NAD+ kinase have been measured in the livers of adrenalectomized or alloxan-diabetic rats and in the livers of rats treated with glucagon, pituitary growth hormone or thyroxine. 2. The activities of these enzymes have been compared with the effects of the same treatments on the nicotinamide nucleotide concentrations in the liver. 3. Alloxandiabetes (+37%) and thyroxine (+27%) both increased the activity of NMN adenylyltransferase. The other treatments were without effect on this enzyme. 4. Only thyroxine increased the activity of NAD+ kinase significantly (+26%) although both adrenalectomy and glucagon tended to increase its activity. 5. The activity of NAD+ glycohydrolase was measured in the livers of diabetic rats, and in the livers of rats treated with either growth hormone or thyroxine. Of these treatments, only growth hormone altered the enzyme activity (+26%, calculated on a total hepatic activity basis). 6. Female rats had a greater hepatic NAD+-kinase activity than males but there was no sex difference with respect to NMN adenylyltransferase. 7. The lack of correlation between the maximum potential activity of these three enzymes and the known changes of the nicotinamide nucleotides in each of the hormone conditions is discussed.

Full text

PDF
507

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHMORE J., HASTINGS A. B., NESBETT F. B., RENOLD A. E. Studies on carbohydrate metabolism in rat liver slices. VI. Hormonal factors influencing glucose-6-phosphatase. J Biol Chem. 1956 Jan;218(1):77–88. [PubMed] [Google Scholar]
  2. BOSCH A. J., HARPER A. E. Effect of hyperthyroidism on liver pyridine nucleotide synthesis. J Biol Chem. 1959 Apr;234(4):929–931. [PubMed] [Google Scholar]
  3. BRANSTER M. V., MORTON R. K. Comparative rates of synthesis of diphosphopyridine nucleotide by normal and tumour tissue from mouse mammary gland; studies with isolated nuclei. Biochem J. 1956 Aug;63(4):640–646. doi: 10.1042/bj0630640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CHANCE B., SCHOENER B. Correlation of oxidation-reduction changes of intracellular reduced pyridine nucleotide and changes in electroencephalogram of the rat in anoxia. Nature. 1962 Sep 8;195:956–958. doi: 10.1038/195956a0. [DOI] [PubMed] [Google Scholar]
  5. CHATAGNER F., GAUTHERON D. [Influence of thyroid hormones on the adenosine triphosphate content of the rat liver]. Biochim Biophys Acta. 1960 Jul 15;41:544–545. doi: 10.1016/0006-3002(60)90060-3. [DOI] [PubMed] [Google Scholar]
  6. CLARK J. B., GREENBAUM A. L., MCLEAN P., REID E. CONCENTRATIONS AND RATES OF SYNTHESIS OF NICOTINAMIDE-ADENINE-DINUCLEODIDE PHOSPHATE IN PRECANCEROUS LIVERS AND HEPATOMAS INDUCED BY AZO-DYE FEEDING. Nature. 1964 Mar 14;201:1131–1132. doi: 10.1038/2011131a0. [DOI] [PubMed] [Google Scholar]
  7. COLOWICK S. P., KAPLAN N. O., CIOTTI M. M. The reaction of pyridine nucleotide with cyanide and its analytical use. J Biol Chem. 1951 Aug;191(2):447–459. [PubMed] [Google Scholar]
  8. FLETCHER K., MYANT N. B. Partial reversal of the effects of thyroxine on lipid synthesis in rat liver by the addition of cofactors in vitro. J Physiol. 1961 Aug;157:542–564. doi: 10.1113/jphysiol.1961.sp006742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GLOCK G. E., MCLEAN P. A preliminary investigation of the hormonal control of the hexose monophosphate oxidative pathway. Biochem J. 1955 Nov;61(3):390–397. doi: 10.1042/bj0610390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GLOCK G. E., MCLEAN P. Effects of hormones on levels of oxidized and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in liver and diaphragm. Biochem J. 1955 Nov;61(3):397–402. doi: 10.1042/bj0610397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GORE M., IBBOTT F., McILWAIN H. The cozymase of mammalian brain. Biochem J. 1950 Jun-Jul;47(1):121–127. doi: 10.1042/bj0470121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GREENBAUM A. L., CLARK J. B., MCLEAN P. THE ESTIMATION OF THE OXIDIZED AND REDUCED FORMS OF THE NICOTINAMIDE NUCLEOTIDES. Biochem J. 1965 Apr;95:161–166. doi: 10.1042/bj0950161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GREENBAUM A. L., CLARK J. B. THE EFFECT OF DIFFERENT HORMONAL CONDITIONS ON THE CONCENTRATION AND OXIDOREDUCTION STATE OF THE NICOTINAMIDE NUCLEOTIDES OF RAT LIVER. Biochem J. 1965 Apr;95:167–179. doi: 10.1042/bj0950167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GREENBAUM A. L., GRAYMORE C. N. The effect of pituitary growth hormone and of insulin on the level of oxidized and reduced coenzyme I in the livers of normal and diabetic rats. Biochem J. 1956 May;63(1):163–167. doi: 10.1042/bj0630163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. GREENGARD P., KALINSK Y. H., PETRACK B. Effect of hypophysectomy on liver diphosphopyridine nucleotide: the role of nicotinamide. Biochim Biophys Acta. 1961 Sep 16;52:408–409. doi: 10.1016/0006-3002(61)90700-4. [DOI] [PubMed] [Google Scholar]
  16. GREENGARD P., QUINN G. P., LANDRAU M. A. Hormonal effects on DPN concentration in rat liver. Biochim Biophys Acta. 1961 Mar 4;47:614–616. doi: 10.1016/0006-3002(61)90566-2. [DOI] [PubMed] [Google Scholar]
  17. GREENGARD P., QUINN G. P. Metabolic effects of tranquilizers and hypophysectomy. Ann N Y Acad Sci. 1962 Jan 13;96:179–184. doi: 10.1111/j.1749-6632.1962.tb50113.x. [DOI] [PubMed] [Google Scholar]
  18. GREENGARD P., QUINN G. P., REID M. B. PITUITARY INFLUENCE OF PYRIDINE NUCLEOTIDE METABOLISM OF RAT LIVER. J Biol Chem. 1964 Jun;239:1887–1892. [PubMed] [Google Scholar]
  19. GREEN S., BODANSKY O. Quantitative aspects of the relationship between nicotinamide adenine dinucleotide and the enzyme nicotinamide adenine dinucleotide glycohydrolase in Ehrlich ascites cells. J Biol Chem. 1963 Jun;238:2119–2122. [PubMed] [Google Scholar]
  20. HARPER A. E., YOUNG F. G. Hormonal factors affecting glucose 6-phosphatase activity. 1. Effect of hypophysectomy and replacement therapy in the rat. Biochem J. 1959 Apr;71(4):696–701. doi: 10.1042/bj0710696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. HILZ H., HLAVICA P., BERTRAM B. DIE ENTSCHEIDENDE BEDEUTUNG DER DPNASE-AKTIVIERUNG FUER DEN DPN-ABFALL IN BESTRAHLTEN ASCITESTUMORZELLEN. Biochem Z. 1963;338:283–299. [PubMed] [Google Scholar]
  22. HOGEBOOM G. H., SCHNEIDER W. C. Cytochemical studies. VI. The synthesis of diphosphopyridine nucleotide by liver cell nuclei. J Biol Chem. 1952 May;197(2):611–620. [PubMed] [Google Scholar]
  23. JACOBSON K. B., KAPLAN N. O. Distribution of enzymes cleaving pyridine nucleotides in animal tissues. J Biophys Biochem Cytol. 1957 Jan 25;3(1):31–43. doi: 10.1083/jcb.3.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. KAPLAN N. O., GOLDIN A., HUMPHREYS S. R., CIOTTI M. M., STOLZENBACH F. E. Pyridine nucleotide synthesis in the mouse. J Biol Chem. 1956 Mar;219(1):287–298. [PubMed] [Google Scholar]
  25. KLEBANOFF S. J., GREENBAUM A. L. The effect of pH on the diabetogenic action of alloxan. J Endocrinol. 1954 Nov;11(4):314–322. doi: 10.1677/joe.0.0110314. [DOI] [PubMed] [Google Scholar]
  26. MALEY G. F., LARDY H. A. Efficiency of phosphorylation in selected oxidations by mitochondria from normal and thyrotoxic rat livers. J Biol Chem. 1955 Jul;215(1):377–388. [PubMed] [Google Scholar]
  27. MELHUISH A. H., GREENBAUM A. L. Studies on the effect of anterior-pituitary growth hormone on oxidative phosphorylation in rat-liver mitochondria. Biochem J. 1961 Feb;78:392–398. doi: 10.1042/bj0780392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. NORDLIE R. C., ARION W. J. EVIDENCE FOR THE COMMON IDENTITY OF GLUCOSE 6-PHOSPHATASE, INORGANIC PYROPHOSPHATASE, AND PYROPHOSPHATE-GLUCOSE PHOSPHOTRANSFERASE. J Biol Chem. 1964 Jun;239:1680–1685. [PubMed] [Google Scholar]
  29. PREISS J., HANDLER P. Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J Biol Chem. 1958 Aug;233(2):493–500. [PubMed] [Google Scholar]
  30. PURVIS J. L., LOWENSTEIN J. M. The relation between intra- and extramitochondrial pyridine nucleotides. J Biol Chem. 1961 Oct;236:2794–2803. [PubMed] [Google Scholar]
  31. REID E. Significant biochemical effects of hepatocarcinogens in the rat: a review. Cancer Res. 1962 May;22:398–430. [PubMed] [Google Scholar]
  32. ROITT I. M. The inhibition of carbohydrate metabolism in ascites-tumour cells by ethyleneimines. Biochem J. 1956 Jun;63(2):300–307. doi: 10.1042/bj0630300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. TATA J. R., ERNSTER L., LINDBERG O., ARRHENIUS E., PEDERSEN S., HEDMAN R. The action of thyroid hormones at the cell level. Biochem J. 1963 Mar;86:408–428. doi: 10.1042/bj0860408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. VILLEE C. A., HAGERMAN D. D. On the identity of the estrogen-sensitive enzyme of human placenta. J Biol Chem. 1958 Jul;233(1):42–48. [PubMed] [Google Scholar]
  35. WANG T. P., KAPLAN N. O. Kinases for the synthesis of coenzyme A and triphosphopyridine nucleotide. J Biol Chem. 1954 Jan;206(1):311–325. [PubMed] [Google Scholar]
  36. WINTZERITH M., KLEIN N., MANDEL L., MANDEL P. Comparison of pyridine nucleotides in the liver and in an ascitic hepatoma. Nature. 1961 Jul 29;191:467–469. doi: 10.1038/191467a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES