Skip to main content
Genetics logoLink to Genetics
. 1996 Apr;142(4):1147–1155. doi: 10.1093/genetics/142.4.1147

Sternopleural Is a Regulatory Mutation of Wingless with Both Dominant and Recessive Effects on Larval Development of Drosophila Melanogaster

C J Neumann 1, S M Cohen 1
PMCID: PMC1207114  PMID: 8846894

Abstract

The Drosophila wingless (wg) gene encodes a secreted signaling protein that is required for many separate patterning events in both embryonic and larval development. wg functions in the development of the adult structures have been studied using the conditional mutant wg(ts) and also using regulatory mutations of wg that reduce larval functions. Here we present evidence that Sternopleural (Sp) is another regulatory allele of wg that affects a subset of larval functions. Sp has both a recessive loss-of-function component and a gain-of-function component. The loss-of-function component reflects a reduction of wg activity in the notum and in the antenna. The gain-of-function component apparently leads to ectopic wg activity in the dorsal first and second leg disc and thereby generates the dominant Sp phenotype. Sp and other wg alleles show a complex pattern of complementation. We present evidence that these genetic properties are due to transvection. These results have implications for the genetic definition of a null allele at loci subject to transvection.

Full Text

The Full Text of this article is available as a PDF (6.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker N. E. Embryonic and imaginal requirements for wingless, a segment-polarity gene in Drosophila. Dev Biol. 1988 Jan;125(1):96–108. doi: 10.1016/0012-1606(88)90062-0. [DOI] [PubMed] [Google Scholar]
  2. Baker N. E. Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. EMBO J. 1987 Jun;6(6):1765–1773. doi: 10.1002/j.1460-2075.1987.tb02429.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen S. M., Jürgens G. Proximal-distal pattern formation in Drosophila: cell autonomous requirement for Distal-less gene activity in limb development. EMBO J. 1989 Jul;8(7):2045–2055. doi: 10.1002/j.1460-2075.1989.tb03613.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Couso J. P., Bate M., Martínez-Arias A. A wingless-dependent polar coordinate system in Drosophila imaginal discs. Science. 1993 Jan 22;259(5094):484–489. doi: 10.1126/science.8424170. [DOI] [PubMed] [Google Scholar]
  5. Couso J. P., Bishop S. A., Martinez Arias A. The wingless signalling pathway and the patterning of the wing margin in Drosophila. Development. 1994 Mar;120(3):621–636. doi: 10.1242/dev.120.3.621. [DOI] [PubMed] [Google Scholar]
  6. Diaz-Benjumea F. J., Cohen B., Cohen S. M. Cell interaction between compartments establishes the proximal-distal axis of Drosophila legs. Nature. 1994 Nov 10;372(6502):175–179. doi: 10.1038/372175a0. [DOI] [PubMed] [Google Scholar]
  7. Diaz-Benjumea F. J., Cohen S. M. Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development. 1995 Dec;121(12):4215–4225. doi: 10.1242/dev.121.12.4215. [DOI] [PubMed] [Google Scholar]
  8. Diaz-Benjumea F. J., Cohen S. M. wingless acts through the shaggy/zeste-white 3 kinase to direct dorsal-ventral axis formation in the Drosophila leg. Development. 1994 Jun;120(6):1661–1670. doi: 10.1242/dev.120.6.1661. [DOI] [PubMed] [Google Scholar]
  9. Gelbart W. M. Synapsis-dependent allelic complementation at the decapentaplegic gene complex in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2636–2640. doi: 10.1073/pnas.79.8.2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hama C., Ali Z., Kornberg T. B. Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter. Genes Dev. 1990 Jul;4(7):1079–1093. doi: 10.1101/gad.4.7.1079. [DOI] [PubMed] [Google Scholar]
  11. Klingensmith J., Nusse R. Signaling by wingless in Drosophila. Dev Biol. 1994 Dec;166(2):396–414. doi: 10.1006/dbio.1994.1325. [DOI] [PubMed] [Google Scholar]
  12. Morata G., Lawrence P. A. The development of wingless, a homeotic mutation of Drosophila. Dev Biol. 1977 Apr;56(2):227–240. doi: 10.1016/0012-1606(77)90266-4. [DOI] [PubMed] [Google Scholar]
  13. Perrimon N., Smouse D. Multiple functions of a Drosophila homeotic gene, zeste-white 3, during segmentation and neurogenesis. Dev Biol. 1989 Oct;135(2):287–305. doi: 10.1016/0012-1606(89)90180-2. [DOI] [PubMed] [Google Scholar]
  14. Phillips R. G., Whittle J. R. wingless expression mediates determination of peripheral nervous system elements in late stages of Drosophila wing disc development. Development. 1993 Jun;118(2):427–438. doi: 10.1242/dev.118.2.427. [DOI] [PubMed] [Google Scholar]
  15. Pirrotta V. Transvection and long-distance gene regulation. Bioessays. 1990 Sep;12(9):409–414. doi: 10.1002/bies.950120903. [DOI] [PubMed] [Google Scholar]
  16. Sharma R. P., Chopra V. L. Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev Biol. 1976 Feb;48(2):461–465. doi: 10.1016/0012-1606(76)90108-1. [DOI] [PubMed] [Google Scholar]
  17. Simpson P., Carteret C. A study of shaggy reveals spatial domains of expression of achaete-scute alleles on the thorax of Drosophila. Development. 1989 May;106(1):57–66. doi: 10.1242/dev.106.1.57. [DOI] [PubMed] [Google Scholar]
  18. Struhl G., Basler K. Organizing activity of wingless protein in Drosophila. Cell. 1993 Feb 26;72(4):527–540. doi: 10.1016/0092-8674(93)90072-x. [DOI] [PubMed] [Google Scholar]
  19. Tautz D., Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 1989 Aug;98(2):81–85. doi: 10.1007/BF00291041. [DOI] [PubMed] [Google Scholar]
  20. Tiong S. Y., Nash D. Genetic analysis of the adenosine3 (Gart) region of the second chromosome of Drosophila melanogaster. Genetics. 1990 Apr;124(4):889–897. doi: 10.1093/genetics/124.4.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vachon G., Cohen B., Pfeifle C., McGuffin M. E., Botas J., Cohen S. M. Homeotic genes of the Bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell. 1992 Oct 30;71(3):437–450. doi: 10.1016/0092-8674(92)90513-c. [DOI] [PubMed] [Google Scholar]
  22. Wilder E. L., Perrimon N. Dual functions of wingless in the Drosophila leg imaginal disc. Development. 1995 Feb;121(2):477–488. doi: 10.1242/dev.121.2.477. [DOI] [PubMed] [Google Scholar]
  23. Williams J. A., Paddock S. W., Carroll S. B. Pattern formation in a secondary field: a hierarchy of regulatory genes subdivides the developing Drosophila wing disc into discrete subregions. Development. 1993 Feb;117(2):571–584. doi: 10.1242/dev.117.2.571. [DOI] [PubMed] [Google Scholar]
  24. van den Heuvel M., Harryman-Samos C., Klingensmith J., Perrimon N., Nusse R. Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J. 1993 Dec 15;12(13):5293–5302. doi: 10.1002/j.1460-2075.1993.tb06225.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES