Skip to main content
Genetics logoLink to Genetics
. 1996 Apr;142(4):1237–1247. doi: 10.1093/genetics/142.4.1237

Microsatellites and the Genetics of Highly Selfing Populations in the Freshwater Snail Bulinus Truncatus

F Viard 1, P Bremond 1, R Labbo 1, F Justy 1, B Delay 1, P Jarne 1
PMCID: PMC1207121  PMID: 8846901

Abstract

Hermaphrodite tropical freshwater snails provide a good opportunity to study the effects of mating system and genetic drift on population genetic structure because they are self-fertile and they occupy transient patchily distributed habitats (ponds). Up to now the lack of detectable allozyme polymorphism prevented any intrapopulation studies. In this paper, we examine the consequences of selfing and bottlenecks on genetic polymorphism using microsatellite markers in 14 natural populations (under a hierarchical sampling design) of the hermaphrodite freshwater snail Bulinus truncatus. These population genetics data allowed us to discuss the currently available mutation models for microsatellite sequences. Microsatellite markers revealed an unexpectedly high levels of genetic variation with <=41 alleles for one locus and gene diversity of 0.20-0.75 among populations. The values of any estimator of F(is) indicate high selfing rates in all populations. Linkage disequilibria observed at all loci for some populations may also indicate high levels of inbreeding. The large extent of genetic differentiation measured by F(st), R(st) or by a test for homogeneity between genic distributions is explained by both selfing and bottlenecks. Despite a limited gene flow, migration events could be detected when comparing different populations within ponds.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allard R. W. The mating system and microevolution. Genetics. 1975 Jun;79 (Suppl):115–126. [PubMed] [Google Scholar]
  2. Amos B., Schlötterer C., Tautz D. Social structure of pilot whales revealed by analytical DNA profiling. Science. 1993 Apr 30;260(5108):670–672. doi: 10.1126/science.8480176. [DOI] [PubMed] [Google Scholar]
  3. Arens P., Odinot P., van Heusden A. W., Lindhout P., Vosman B. GATA- and GACA-repeats are not evenly distributed throughout the tomato genome. Genome. 1995 Feb;38(1):84–90. doi: 10.1139/g95-010. [DOI] [PubMed] [Google Scholar]
  4. Bancroft D. R., Pemberton J. M., King P. Extensive protein and microsatellite variability in an isolated, cyclic ungulate population. Heredity (Edinb) 1995 Mar;74(Pt 3):326–336. doi: 10.1038/hdy.1995.47. [DOI] [PubMed] [Google Scholar]
  5. Chakraborty R., Neel J. V. Description and validation of a method for simultaneous estimation of effective population size and mutation rate from human population data. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9407–9411. doi: 10.1073/pnas.86.23.9407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994 Sep 15;371(6494):215–220. doi: 10.1038/371215a0. [DOI] [PubMed] [Google Scholar]
  7. Doums C., Bremond P., Delay B., Jarne P. The genetical and environmental determination of phally polymorphism in the freshwater snail Bulinus truncatus. Genetics. 1996 Jan;142(1):217–225. doi: 10.1093/genetics/142.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FitzSimmons N. N., Moritz C., Moore S. S. Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution. Mol Biol Evol. 1995 May;12(3):432–440. doi: 10.1093/oxfordjournals.molbev.a040218. [DOI] [PubMed] [Google Scholar]
  10. Hedrick P. W. Hitchhiking: a comparison of linkage and partial selfing. Genetics. 1980 Mar;94(3):791–808. doi: 10.1093/genetics/94.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hughes C. R., Queller D. C. Detection of highly polymorphic microsatellite loci in a species with little allozyme polymorphism. Mol Ecol. 1993 Jun;2(3):131–137. doi: 10.1111/j.1365-294x.1993.tb00102.x. [DOI] [PubMed] [Google Scholar]
  12. Ishibashi Y., Saitoh T., Abe S., Yoshida M. C. Polymorphic microsatellite DNA markers in the grey red-backed vole Clethrionomys rufocanus bedfordiae. Mol Ecol. 1995 Feb;4(1):127–128. doi: 10.1111/j.1365-294x.1995.tb00200.x. [DOI] [PubMed] [Google Scholar]
  13. Jarne P., Delay B., Bellec C., Roizes G., Cuny G. Analysis of mating systems in the schistosome-vector hermaphrodite snail Bulinus globosus by DNA fingerprinting. Heredity (Edinb) 1992 Feb;68(Pt 2):141–146. doi: 10.1038/hdy.1992.22. [DOI] [PubMed] [Google Scholar]
  14. Jarne P., Viard F., Delay B., Cuny G. Variable microsatellites in the highly selfing snail Bulinus truncatus (Basommatophora: Planorbidae). Mol Ecol. 1994 Oct;3(5):527–528. doi: 10.1111/j.1365-294x.1994.tb00132.x. [DOI] [PubMed] [Google Scholar]
  15. KIMURA M., CROW J. F. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. Genetics. 1964 Apr;49:725–738. doi: 10.1093/genetics/49.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rousset F. Equilibrium values of measures of population subdivision for stepwise mutation processes. Genetics. 1996 Apr;142(4):1357–1362. doi: 10.1093/genetics/142.4.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schoen D. J., Brown A. H. Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4494–4497. doi: 10.1073/pnas.88.10.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995 Jan;139(1):457–462. doi: 10.1093/genetics/139.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stallings R. L., Ford A. F., Nelson D., Torney D. C., Hildebrand C. E., Moyzis R. K. Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genomics. 1991 Jul;10(3):807–815. doi: 10.1016/0888-7543(91)90467-s. [DOI] [PubMed] [Google Scholar]
  20. Strand M., Prolla T. A., Liskay R. M., Petes T. D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 1993 Sep 16;365(6443):274–276. doi: 10.1038/365274a0. [DOI] [PubMed] [Google Scholar]
  21. Tajima F. The effect of change in population size on DNA polymorphism. Genetics. 1989 Nov;123(3):597–601. doi: 10.1093/genetics/123.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Taylor A. C., Sherwin W. B., Wayne R. K. Genetic variation of microsatellite loci in a bottlenecked species: the northern hairy-nosed wombat Lasiorhinus krefftii. Mol Ecol. 1994 Aug;3(4):277–290. doi: 10.1111/j.1365-294x.1994.tb00068.x. [DOI] [PubMed] [Google Scholar]
  23. Valdes A. M., Slatkin M., Freimer N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics. 1993 Mar;133(3):737–749. doi: 10.1093/genetics/133.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wall W. J., Williamson R., Petrou M., Papaioannou D., Parkin B. H. Variation of short tandem repeats within and between populations. Hum Mol Genet. 1993 Jul;2(7):1023–1029. doi: 10.1093/hmg/2.7.1023. [DOI] [PubMed] [Google Scholar]
  25. Wolff R. K., Plaetke R., Jeffreys A. J., White R. Unequal crossingover between homologous chromosomes is not the major mechanism involved in the generation of new alleles at VNTR loci. Genomics. 1989 Aug;5(2):382–384. doi: 10.1016/0888-7543(89)90076-1. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES