Skip to main content
Genetics logoLink to Genetics
. 1996 Apr;142(4):1289–1298. doi: 10.1093/genetics/142.4.1289

Two Persistent Line-1 Lineages in Peromyscus Have Unequal Rates of Evolution

N C Casavant 1, A N Sherman 1, H A Wichman 1
PMCID: PMC1207125  PMID: 8846905

Abstract

LINE-1, the major family of long, interspersed repeats in the mammalian genome, moves via an RNA intermediate and encodes its own reverse transcriptase. Comparative sequence analysis was used to reconstruct the phylogenetic history of LINE-1 dynamics in the deer mouse, Peromyscus. As is the case in Mus and Rattus, a very small number of active templates produce the majority of LINE-1 copies in Peromyscus. However, in contrast to the single LINE-1 lineage seen in the muroid rodents, Peromyscus has at least two LINE-1 lineages whose most recent common ancestor probably existed before the peromyscine radiation. Species-specific variants of Lineage 1, and intact open reading frames in the youngest elements of both Lineages 1 and 2, suggest that both lineages have remained active within the same genome. The higher number of shared-sequence variants in Lineage 1 relative to Lineage 2 suggests that Lineage 1 has replaced its master template much more frequently than Lineage 2 or that the reverse transcriptase Lineage 1 is more error prone. The implications of the method used to acquire LINE-1 sequences for analysis are discussed.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adey N. B., Schichman S. A., Graham D. K., Peterson S. N., Edgell M. H., Hutchison C. A., 3rd Rodent L1 evolution has been driven by a single dominant lineage that has repeatedly acquired new transcriptional regulatory sequences. Mol Biol Evol. 1994 Sep;11(5):778–789. doi: 10.1093/oxfordjournals.molbev.a040158. [DOI] [PubMed] [Google Scholar]
  2. Britten R. J., Baron W. F., Stout D. B., Davidson E. H. Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4770–4774. doi: 10.1073/pnas.85.13.4770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Casavant N. C., Hardies S. C. The dynamics of murine LINE-1 subfamily amplification. J Mol Biol. 1994 Aug 19;241(3):390–397. doi: 10.1006/jmbi.1994.1515. [DOI] [PubMed] [Google Scholar]
  4. Clough J. E., Foster J. A., Barnett M., Wichman H. A. Computer simulation of transposable element evolution: random template and strict master models. J Mol Evol. 1996 Jan;42(1):52–58. doi: 10.1007/BF00163211. [DOI] [PubMed] [Google Scholar]
  5. D'Ambrosio E., Waitzkin S. D., Witney F. R., Salemme A., Furano A. V. Structure of the highly repeated, long interspersed DNA family (LINE or L1Rn) of the rat. Mol Cell Biol. 1986 Feb;6(2):411–424. doi: 10.1128/mcb.6.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deininger P. L., Batzer M. A., Hutchison C. A., 3rd, Edgell M. H. Master genes in mammalian repetitive DNA amplification. Trends Genet. 1992 Sep;8(9):307–311. doi: 10.1016/0168-9525(92)90262-3. [DOI] [PubMed] [Google Scholar]
  7. Edgell M. H., Hardies S. C., Loeb D. D., Shehee W. R., Padgett R. W., Burton F. H., Comer M. B., Casavant N. C., Funk F. D., Hutchison C. A., 3rd The L1 family in mice. Prog Clin Biol Res. 1987;251:107–129. [PubMed] [Google Scholar]
  8. Furano A. V., Hayward B. E., Chevret P., Catzeflis F., Usdin K. Amplification of the ancient murine Lx family of long interspersed repeated DNA occurred during the murine radiation. J Mol Evol. 1994 Jan;38(1):18–27. doi: 10.1007/BF00175491. [DOI] [PubMed] [Google Scholar]
  9. Holmes S. E., Dombroski B. A., Krebs C. M., Boehm C. D., Kazazian H. H., Jr A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat Genet. 1994 Jun;7(2):143–148. doi: 10.1038/ng0694-143. [DOI] [PubMed] [Google Scholar]
  10. Kass D. H., Berger F. G., Dawson W. D. The evolution of coexisting highly divergent LINE-1 subfamilies within the rodent genus Peromyscus. J Mol Evol. 1992 Dec;35(6):472–485. doi: 10.1007/BF00160208. [DOI] [PubMed] [Google Scholar]
  11. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
  12. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  13. Lee R. N., Jaskula J. C., van den Bussche R. A., Baker R. J., Wichman H. A. Retrotransposon Mys was active during evolution of the Peromyscus leucopus-maniculatus complex. J Mol Evol. 1996 Jan;42(1):44–51. doi: 10.1007/BF00163210. [DOI] [PubMed] [Google Scholar]
  14. Leeflang E. P., Liu W. M., Hashimoto C., Choudary P. V., Schmid C. W. Phylogenetic evidence for multiple Alu source genes. J Mol Evol. 1992 Jul;35(1):7–16. doi: 10.1007/BF00160256. [DOI] [PubMed] [Google Scholar]
  15. Loeb D. D., Padgett R. W., Hardies S. C., Shehee W. R., Comer M. B., Edgell M. H., Hutchison C. A., 3rd The sequence of a large L1Md element reveals a tandemly repeated 5' end and several features found in retrotransposons. Mol Cell Biol. 1986 Jan;6(1):168–182. doi: 10.1128/mcb.6.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Longmire J. L., Lewis A. K., Brown N. C., Buckingham J. M., Clark L. M., Jones M. D., Meincke L. J., Meyne J., Ratliff R. L., Ray F. A. Isolation and molecular characterization of a highly polymorphic centromeric tandem repeat in the family Falconidae. Genomics. 1988 Jan;2(1):14–24. doi: 10.1016/0888-7543(88)90104-8. [DOI] [PubMed] [Google Scholar]
  17. Martin S. L., Voliva C. F., Hardies S. C., Edgell M. H., Hutchison C. A., 3rd Tempo and mode of concerted evolution in the L1 repeat family of mice. Mol Biol Evol. 1985 Mar;2(2):127–140. doi: 10.1093/oxfordjournals.molbev.a040340. [DOI] [PubMed] [Google Scholar]
  18. Miles C., Meuth M. Hamster line and ALU-equivalent sequences are present in the small polydispersed circular DNA population of CHO cells. Nucleic Acids Res. 1989 Jul 25;17(14):5846–5846. doi: 10.1093/nar/17.14.5846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pascale E., Liu C., Valle E., Usdin K., Furano A. V. The evolution of long interspersed repeated DNA (L1, LINE 1) as revealed by the analysis of an ancient rodent L1 DNA family. J Mol Evol. 1993 Jan;36(1):9–20. doi: 10.1007/BF02407302. [DOI] [PubMed] [Google Scholar]
  20. Price D. K., Ayres J. A., Pasqualone D., Cabell C. H., Miller W., Hardison R. C. The 5' ends of LINE1 repeats in rabbit DNA define subfamilies and reveal a short sequence conserved between rabbits and humans. Genomics. 1992 Oct;14(2):320–331. doi: 10.1016/s0888-7543(05)80222-8. [DOI] [PubMed] [Google Scholar]
  21. Rikke B. A., Garvin L. D., Hardies S. C. Systematic identification of LINE-1 repetitive DNA sequence differences having species specificity between Mus spretus and Mus domesticus. J Mol Biol. 1991 Jun 20;219(4):635–643. doi: 10.1016/0022-2836(91)90660-x. [DOI] [PubMed] [Google Scholar]
  22. Rogers J. H. The origin and evolution of retroposons. Int Rev Cytol. 1985;93:187–279. doi: 10.1016/s0074-7696(08)61375-3. [DOI] [PubMed] [Google Scholar]
  23. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shen M. R., Batzer M. A., Deininger P. L. Evolution of the master Alu gene(s). J Mol Evol. 1991 Oct;33(4):311–320. doi: 10.1007/BF02102862. [DOI] [PubMed] [Google Scholar]
  25. Skowronski J., Singer M. F. The abundant LINE-1 family of repeated DNA sequences in mammals: genes and pseudogenes. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):457–464. doi: 10.1101/sqb.1986.051.01.055. [DOI] [PubMed] [Google Scholar]
  26. Smit A. F., Tóth G., Riggs A. D., Jurka J. Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mol Biol. 1995 Feb 24;246(3):401–417. doi: 10.1006/jmbi.1994.0095. [DOI] [PubMed] [Google Scholar]
  27. Wichman H. A., Potter S. S., Pine D. S. Mys, a family of mammalian transposable elements isolated by phylogenetic screening. Nature. 1985 Sep 5;317(6032):77–81. doi: 10.1038/317077a0. [DOI] [PubMed] [Google Scholar]
  28. Willard C., Nguyen H. T., Schmid C. W. Existence of at least three distinct Alu subfamilies. J Mol Evol. 1987;26(3):180–186. doi: 10.1007/BF02099850. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES