Skip to main content
Genetics logoLink to Genetics
. 1996 Apr;142(4):1369–1377. doi: 10.1093/genetics/142.4.1369

On Genetic Map Functions

H Zhao 1, T P Speed 1
PMCID: PMC1207133  PMID: 8846913

Abstract

Various genetic map functions have been proposed to infer the unobservable genetic distance between two loci from the observable recombination fraction between them. Some map functions were found to fit data better than others. When there are more than three markers, multilocus recombination probabilities cannot be uniquely determined by the defining property of map functions, and different methods have been proposed to permit the use of map functions to analyze multilocus data. If for a given map function, there is a probability model for recombination that can give rise to it, then joint recombination probabilities can be deduced from this model. This provides another way to use map functions in multilocus analysis. In this paper we show that stationary renewal processes give rise to most of the map functions in the literature. Furthermore, we show that the interevent distributions of these renewal processes can all be approximated quite well by gamma distributions.

Full Text

The Full Text of this article is available as a PDF (856.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg O. G. Periodic selection and hitchhiking in a bacterial population. J Theor Biol. 1995 Apr 7;173(3):307–320. doi: 10.1006/jtbi.1995.0064. [DOI] [PubMed] [Google Scholar]
  2. Berg O. G. The evolutionary selection of DNA base pairs in gene-regulatory binding sites. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7501–7505. doi: 10.1073/pnas.89.16.7501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blank R. D., Campbell G. R., Calabro A., D'Eustachio P. A linkage map of mouse chromosome 12: localization of Igh and effects of sex and interference on recombination. Genetics. 1988 Dec;120(4):1073–1083. doi: 10.1093/genetics/120.4.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CARTER T. C., ROBERTSON A. A mathematical treatment of genetical recombination using a four-strand model. Proc R Soc Lond B Biol Sci. 1952 Apr 24;139(896):410–426. doi: 10.1098/rspb.1952.0021. [DOI] [PubMed] [Google Scholar]
  5. Felsenstein J. A mathematically tractable family of genetic mapping functions with different amounts of interference. Genetics. 1979 Apr;91(4):769–775. doi: 10.1093/genetics/91.4.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guttman D. S., Dykhuizen D. E. Detecting selective sweeps in naturally occurring Escherichia coli. Genetics. 1994 Dec;138(4):993–1003. doi: 10.1093/genetics/138.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hartl D. L., Dykhuizen D. E. The population genetics of Escherichia coli. Annu Rev Genet. 1984;18:31–68. doi: 10.1146/annurev.ge.18.120184.000335. [DOI] [PubMed] [Google Scholar]
  8. Hartl D. L., Moriyama E. N., Sawyer S. A. Selection intensity for codon bias. Genetics. 1994 Sep;138(1):227–234. doi: 10.1093/genetics/138.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Helling R. B., Vargas C. N., Adams J. Evolution of Escherichia coli during growth in a constant environment. Genetics. 1987 Jul;116(3):349–358. doi: 10.1093/genetics/116.3.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol. 1985 Jan;2(1):13–34. doi: 10.1093/oxfordjournals.molbev.a040335. [DOI] [PubMed] [Google Scholar]
  11. Jennings H S. The Numerical Relations in the Crossing over of the Genes, with a Critical Examination of the Theory That the Genes Are Arranged in a Linear Series. Genetics. 1923 Sep;8(5):393–457. doi: 10.1093/genetics/8.5.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lenski R. E. Assessing the genetic structure of microbial populations. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4334–4336. doi: 10.1073/pnas.90.10.4334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Levin B. R. Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics. 1981 Sep;99(1):1–23. doi: 10.1093/genetics/99.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liberman U., Karlin S. Theoretical models of genetic map functions. Theor Popul Biol. 1984 Jun;25(3):331–346. doi: 10.1016/0040-5809(84)90013-3. [DOI] [PubMed] [Google Scholar]
  15. Maruyama T., Kimura M. Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6710–6714. doi: 10.1073/pnas.77.11.6710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McPeek M. S., Speed T. P. Modeling interference in genetic recombination. Genetics. 1995 Feb;139(2):1031–1044. doi: 10.1093/genetics/139.2.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morton N. E., MacLean C. J. Multilocus recombination frequencies. Genet Res. 1984 Aug;44(1):99–107. doi: 10.1017/s0016672300026276. [DOI] [PubMed] [Google Scholar]
  18. Rao D. C., Morton N. E., Lindsten J., Hultén M., Yee S. A mapping function for man. Hum Hered. 1977;27(2):99–104. doi: 10.1159/000152856. [DOI] [PubMed] [Google Scholar]
  19. Risch N., Lange K. An alternative model of recombination and interference. Ann Hum Genet. 1979 Jul;43(1):61–70. doi: 10.1111/j.1469-1809.1979.tb01549.x. [DOI] [PubMed] [Google Scholar]
  20. SCHNELL F. W. Some general formulations of linkage effects in inbreeding. Genetics. 1961 Aug;46:947–957. doi: 10.1093/genetics/46.8.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  22. Speed T. P., McPeek M. S., Evans S. N. Robustness of the no-interference model for ordering genetic markers. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3103–3106. doi: 10.1073/pnas.89.7.3103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stam P. Interference in Genetic Crossing over and Chromosome Mapping. Genetics. 1979 Jun;92(2):573–594. doi: 10.1093/genetics/92.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Todd J. A., Aitman T. J., Cornall R. J., Ghosh S., Hall J. R., Hearne C. M., Knight A. M., Love J. M., McAleer M. A., Prins J. B. Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature. 1991 Jun 13;351(6327):542–547. doi: 10.1038/351542a0. [DOI] [PubMed] [Google Scholar]
  25. Weeks D. E. Invalidity of the Rao map function for three loci. Hum Hered. 1994 May-Jun;44(3):178–180. doi: 10.1159/000154213. [DOI] [PubMed] [Google Scholar]
  26. Weeks D. E., Lathrop G. M., Ott J. Multipoint mapping under genetic interference. Hum Hered. 1993 Mar-Apr;43(2):86–97. doi: 10.1159/000154123. [DOI] [PubMed] [Google Scholar]
  27. Zhao H., McPeek M. S., Speed T. P. Statistical analysis of chromatid interference. Genetics. 1995 Feb;139(2):1057–1065. doi: 10.1093/genetics/139.2.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zhao H., Speed T. P., McPeek M. S. Statistical analysis of crossover interference using the chi-square model. Genetics. 1995 Feb;139(2):1045–1056. doi: 10.1093/genetics/139.2.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES