Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 Sep;96(3):771–776. doi: 10.1042/bj0960771

Some factors affecting cyclopropane acid formation in Escherichia coli

V A Knivett 1, Julia Cullen 1
PMCID: PMC1207215  PMID: 5324304

Abstract

1. The fatty acid composition of the extractable lipids of Escherichia coli varied with growth conditions. 2. The principal fatty acids were palmitic acid, hexadecenoic acid, octadecenoic acid and the cyclopropane acids, methylenehexadecanoic acid and methyleneoctadecanoic acid. 3. Cyclopropane acid formation from monoenoic acids was increased by acid media, poor oxygen supply, or high growth temperature. 4. Cyclopropane acid formation was decreased by alkaline media, well oxygenated conditions, the presence of citrate, or lack of Mg2+.

Full text

PDF
771

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CARROLL K. K. Quantitative estimation of peak areas in gas-liquid chromatography. Nature. 1961 Jul 22;191:377–378. doi: 10.1038/191377a0. [DOI] [PubMed] [Google Scholar]
  2. COPPOCK J. B., DANIELS N. W., GRESHAM G. A., HOWARD A. N. A comparison of free range and battery hens' eggs in relation to essential fatty acids and aortic sudanophilia in the chick. J Atheroscler Res. 1962 Jan-Apr;2:139–145. doi: 10.1016/s0368-1319(62)80062-3. [DOI] [PubMed] [Google Scholar]
  3. ERWIN J., BLOCH K. BIOSYNTHESIS OF UNSATURATED FATTY ACIDS IN MICROORGANISMS. Science. 1964 Mar 6;143(3610):1006–1012. doi: 10.1126/science.143.3610.1006. [DOI] [PubMed] [Google Scholar]
  4. GOLDFINE H., BLOCH K. On the origin of unsaturated fatty acids in clostridia. J Biol Chem. 1961 Oct;236:2596–2601. [PubMed] [Google Scholar]
  5. GRAY G. M. The cyclopropane-ring fatty acids of Salmonella typhimurium. Biochim Biophys Acta. 1962 Nov 19;65:135–141. doi: 10.1016/0006-3002(62)90157-9. [DOI] [PubMed] [Google Scholar]
  6. HOLME T., EDEBO L. Preparation of biologically active fractions of Salmonella typhimurium. I. Cultivation methods. Acta Pathol Microbiol Scand. 1961;51:164–172. doi: 10.1111/j.1699-0463.1961.tb00355.x. [DOI] [PubMed] [Google Scholar]
  7. KANESHIRO T., MARR A. G. cis-9,10-Methylene hexadecanoic acid from the phospholipids of Escherichia coli. J Biol Chem. 1961 Oct;236:2615–2619. [PubMed] [Google Scholar]
  8. KATES M., ADAMS G. A., MARTIN S. M. LIPIDS OF SERRATIA MARCESCENS. Can J Biochem. 1964 Apr;42:461–479. doi: 10.1139/o64-054. [DOI] [PubMed] [Google Scholar]
  9. KEMP R. G., ROSE I. A. COUPLING OF REDUCED PYRIDINE NUCLEOTIDE IN LEUCONOSTOC MESENTEROIDES. J Biol Chem. 1964 Sep;239:2998–3006. [PubMed] [Google Scholar]
  10. MACLEOD P., JENSEN R. G., GANDER G. W., SAMPUGNA J. Quantity and fatty acid composition of lipid extracted from cells of Streptococcus lactis. J Bacteriol. 1962 Apr;83:806–810. doi: 10.1128/jb.83.4.806-810.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. O'leary W. M. S-ADENOSYLMETHIONINE IN THE BIOSYNTHESIS OF BACTERIAL FATTY ACIDS. J Bacteriol. 1962 Nov;84(5):967–972. doi: 10.1128/jb.84.5.967-972.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SCHULTZ J. S. COTTON CLOSURE AS AN AERATION BARRIER IN SHAKEN FLASK FERMENTATIONS. Appl Microbiol. 1964 Jul;12:305–310. doi: 10.1128/am.12.4.305-310.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. ZALKIN H., LAW J. H., GOLDFINE H. Enzymatic synthesis of cyclopropane fatty acids catalyzed by bacterial extracts. J Biol Chem. 1963 Apr;238:1242–1248. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES