Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 Sep;96(3):777–780. doi: 10.1042/bj0960777

Stimulation of oxidation of mitochondrial fatty acids and of acetate by acetylcarnitine

N Siliprandi 1, Dagmar Siliprandi 1, M Ciman 1
PMCID: PMC1207216  PMID: 5862415

Abstract

1. Acetylcarnitine added in catalytic amounts to kidney mitochondria produces an active oxidation of endogenous fatty acids. 2. In conditions of mitochondrial `aging', under which acetate is not oxidized, acetylcarnitine also promotes the oxidation of this exogenous substrate. 3. Dinitrophenol completely abolishes the action of acetylcarnitine. 4. Carnitine is ineffective both in the oxidation of endogenous fatty acids and of exogenous acetate. 5. The action of acetylcarnitine is shared, though to a smaller extent, by pyruvate. 6. The mechanism of acetylcarnitine action has been interpreted by considering that the readily oxidizable acetyl group of acetylcarnitine can supply the initial investment of energy needed to start fatty acid oxidation.

Full text

PDF
777

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BREMER J. Carnitine in intermediary metabolism. Reversible acetylation of carnitine by mitochondria. J Biol Chem. 1962 Jul;237:2228–2231. [PubMed] [Google Scholar]
  2. BREMER J. Carnitine in intermediary metabolism. The metabolism of fatty acid esters of carnitine by mitochondria. J Biol Chem. 1962 Dec;237:3628–3632. [PubMed] [Google Scholar]
  3. Duncombe W. G. The colorimetric micro-determination of long-chain fatty acids. Biochem J. 1963 Jul;88(1):7–10. doi: 10.1042/bj0880007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FRITZ I. B., KAPLAN E., YUE K. T. Specificity of carnitine action on fatty acid oxidation by heart muscle. Am J Physiol. 1962 Jan;202:117–121. doi: 10.1152/ajplegacy.1962.202.1.117. [DOI] [PubMed] [Google Scholar]
  5. FRITZ I. B., McEWEN B. Effects of carnitine on fatty-acid oxidation by muscle. Science. 1959 Feb 6;129(3345):334–335. doi: 10.1126/science.129.3345.334. [DOI] [PubMed] [Google Scholar]
  6. FRITZ I. B., YUE K. T. EFFECTS OF CARNITINE ON ACETYL-COA OXIDATION BY HEART MUSCLE MITOCHONDRIA. Am J Physiol. 1964 Mar;206:531–535. doi: 10.1152/ajplegacy.1964.206.3.531. [DOI] [PubMed] [Google Scholar]
  7. GARLAND P. B., RANDLE P. J. EFFECTS OF ALLOXAN DIABETES AND ADRENALINE ON CONCENTRATIONS OF FREE FATTY ACIDS IN RAT HEART AND DIAPHRAGM MUSCLES. Nature. 1963 Jul 27;199:381–382. doi: 10.1038/199381a0. [DOI] [PubMed] [Google Scholar]
  8. HUELSMANN W. C., SILIPRANDI D., CIMAN M., SILIPRANDI N. EFFECT OF CARNITINE ON THE OXIDATION OF ALPHA-OXOGLUTARATE TO SUCCINATE IN THE PRESENCE OF ACETOACETATE OR PYRUVATE. Biochim Biophys Acta. 1964 Oct 9;93:166–168. doi: 10.1016/0304-4165(64)90271-5. [DOI] [PubMed] [Google Scholar]
  9. ROSSI C. R., SARTORELLI L., TATO L., SILIPRANDI N. RELATIONSHIP BETWEEN OXIDATIVE PHOSPHORYLATION EFFICIENCY AND PHOSPHOLIPID CONTENT IN RAT LIVER MITOCHONDRIA. Arch Biochem Biophys. 1964 Jul;107:170–175. doi: 10.1016/0003-9861(64)90286-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES