Skip to main content
Genetics logoLink to Genetics
. 1996 May;143(1):375–384. doi: 10.1093/genetics/143.1.375

Nucleotide Variation at the Gpdh Locus in the Genus Drosophila

R S Wells 1
PMCID: PMC1207270  PMID: 8722789

Abstract

The Gpdh locus was sequenced in a broad range of Drosophila species. In contrast to the extreme evolutionary constraint seen at the amino acid level, the synonymous sites evolve at rates comparable to those of other genes. Gpdh nucleotide sequences were used to infer a phylogenetic tree, and the relationships among the species of the obscura group were examined in detail. A survey of nucleotide polymorphism within D. pseudoobscura revealed no amino acid variation in this species. Applying a modified McDonald-Kreitman test, the amino acid divergence between species in the obscura group does not appear to be excessive, implying that drift is adequate to explain the patterns of amino acid change at this locus. In addition, the level of polymorphism at the Gpdh locus in D. pseudoobscura is comparable to that found at other loci, as determined by a Hudson-Kreitman-Aguade test. Thus, the pattern of nucleotide variation within and between species at the Gpdh locus is consistent with a neutral model.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUZZATI-TRAVERSO A. A., SCOSSIROLI R. E. The obscura group of the genus Drosophila. Adv Genet. 1955;7:47–92. [PubMed] [Google Scholar]
  2. Barrio E., Latorre A., Moya A. Phylogeny of the Drosophila obscura species group deduced from mitochondrial DNA sequences. J Mol Evol. 1994 Nov;39(5):478–488. doi: 10.1007/BF00173417. [DOI] [PubMed] [Google Scholar]
  3. Beckenbach A. T., Wei Y. W., Liu H. Relationships in the Drosophila obscura species group, inferred from mitochondrial cytochrome oxidase II sequences. Mol Biol Evol. 1993 May;10(3):619–634. doi: 10.1093/oxfordjournals.molbev.a040034. [DOI] [PubMed] [Google Scholar]
  4. Berry A. J., Ajioka J. W., Kreitman M. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics. 1991 Dec;129(4):1111–1117. doi: 10.1093/genetics/129.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beverley S. M., Wilson A. C. Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution. J Mol Evol. 1984;21(1):1–13. doi: 10.1007/BF02100622. [DOI] [PubMed] [Google Scholar]
  6. Bewley G. C., Cook J. L., Kusakabe S., Mukai T., Rigby D. L., Chambers G. K. Sequence, structure and evolution of the gene coding for sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster. Nucleic Acids Res. 1989 Nov 11;17(21):8553–8567. doi: 10.1093/nar/17.21.8553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeSalle R. The phylogenetic relationships of flies in the family Drosophilidae deduced from mtDNA sequences. Mol Phylogenet Evol. 1992 Mar;1(1):31–40. doi: 10.1016/1055-7903(92)90033-d. [DOI] [PubMed] [Google Scholar]
  8. Higuchi R. G., Ochman H. Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Res. 1989 Jul 25;17(14):5865–5865. doi: 10.1093/nar/17.14.5865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keith T. P. Frequency Distribution of Esterase-5 Alleles in Two Populations of DROSOPHILA PSEUDOOBSCURA. Genetics. 1983 Sep;105(1):135–155. doi: 10.1093/genetics/105.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. doi: 10.1038/304412a0. [DOI] [PubMed] [Google Scholar]
  12. Kwiatowski J., Skarecky D., Bailey K., Ayala F. J. Phylogeny of Drosophila and related genera inferred from the nucleotide sequence of the Cu,Zn Sod gene. J Mol Evol. 1994 May;38(5):443–454. doi: 10.1007/BF00178844. [DOI] [PubMed] [Google Scholar]
  13. Latorre A., Barrio E., Moya A., Ayala F. J. Mitochondrial DNA evolution in the Drosophila obscura group. Mol Biol Evol. 1988 Nov;5(6):717–728. doi: 10.1093/oxfordjournals.molbev.a040526. [DOI] [PubMed] [Google Scholar]
  14. Li W. H., Wu C. I., Luo C. C. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol. 1985 Mar;2(2):150–174. doi: 10.1093/oxfordjournals.molbev.a040343. [DOI] [PubMed] [Google Scholar]
  15. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  16. Richard I., Beckmann J. S. How neutral are synonymous codon mutations? Nat Genet. 1995 Jul;10(3):259–259. doi: 10.1038/ng0795-259. [DOI] [PubMed] [Google Scholar]
  17. Riley M. A., Hallas M. E., Lewontin R. C. Distinguishing the forces controlling genetic variation at the Xdh locus in Drosophila pseudoobscura. Genetics. 1989 Oct;123(2):359–369. doi: 10.1093/genetics/123.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Riley M. A., Kaplan S. R., Veuille M. Nucleotide polymorphism at the xanthine dehydrogenase locus in Drosophila pseudoobscura. Mol Biol Evol. 1992 Jan;9(1):56–69. doi: 10.1093/oxfordjournals.molbev.a040708. [DOI] [PubMed] [Google Scholar]
  19. Riley M. A. Nucleotide sequence of the Xdh region in Drosophila pseudoobscura and an analysis of the evolution of synonymous codons. Mol Biol Evol. 1989 Jan;6(1):33–52. doi: 10.1093/oxfordjournals.molbev.a040529. [DOI] [PubMed] [Google Scholar]
  20. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  21. Schaeffer S. W., Miller E. L. Estimates of gene flow in Drosophila pseudoobscura determined from nucleotide sequence analysis of the alcohol dehydrogenase region. Genetics. 1992 Oct;132(2):471–480. doi: 10.1093/genetics/132.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schaeffer S. W., Miller E. L. Estimates of linkage disequilibrium and the recombination parameter determined from segregating nucleotide sites in the alcohol dehydrogenase region of Drosophila pseudoobscura. Genetics. 1993 Oct;135(2):541–552. doi: 10.1093/genetics/135.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sturtevant A. H. On the Subdivision of the Genus Drosophila. Proc Natl Acad Sci U S A. 1939 Mar;25(3):137–141. doi: 10.1073/pnas.25.3.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tajima F. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics. 1993 Oct;135(2):599–607. doi: 10.1093/genetics/135.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993 May;10(3):512–526. doi: 10.1093/oxfordjournals.molbev.a040023. [DOI] [PubMed] [Google Scholar]
  26. Tominaga H., Shiba T., Narise S. Structure of Drosophila virilis glycerol-3-phosphate dehydrogenase gene and a comparison with the Drosophila melanogaster gene. Biochim Biophys Acta. 1992 Jun 15;1131(2):233–238. doi: 10.1016/0167-4781(92)90086-f. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES