Skip to main content
Genetics logoLink to Genetics
. 1996 Jun;143(2):829–837. doi: 10.1093/genetics/143.2.829

Spontaneous Mutational Variances and Covariances for Fitness-Related Traits in Drosophila Melanogaster

J Fernandez 1, C Lopez-Fanjul 1
PMCID: PMC1207341  PMID: 8725231

Abstract

Starting from a completely homozygous population of Drosophila melanogaster, 176 lines were derived and independently maintained by a single brother-sister mating per generation. Three fitness-related traits were considered (fecundity, egg-to-pupa and pupa-to-adult viabilities). Mutational heritabilities of these traits and genetic correlations between all possible pairs were calculated from the between line divergence (codivergence), after 104-106 generations of mutation accumulation. Mutational heritabilities ranged from 0.60 X 10(-3) to 0.82 X 10(-3) and correlations from -0.11 to 0.25. These values are likely to be underestimates due to selection against deleterious mutations. The distribution of the means of the lines was asymmetric, positive for fecundity and negative for both viability components. The coefficients of asymmetry are also likely to be biased, again due to selection. Extreme lines from the two tails of the distribution were examined in detail. Homozygous line effects were all negative for viability traits but predominantly positive for fecundity, indicating the fixation of mutations with positive effects on the latter. Corresponding heterozygous line effects showed a variable degree of dominance.

Full Text

The Full Text of this article is available as a PDF (922.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton N. H. Pleiotropic models of quantitative variation. Genetics. 1990 Mar;124(3):773–782. doi: 10.1093/genetics/124.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caballero A., Keightley P. D. A pleiotropic nonadditive model of variation in quantitative traits. Genetics. 1994 Nov;138(3):883–900. doi: 10.1093/genetics/138.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caballero A., Toro M. A., López-Fanjul C. The response to artificial selection from new mutations in Drosophila melanogaster. Genetics. 1991 May;128(1):89–102. doi: 10.1093/genetics/128.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Castrillon D. H., Gönczy P., Alexander S., Rawson R., Eberhart C. G., Viswanathan S., DiNardo S., Wasserman S. A. Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of male-sterile mutants generated by single P element mutagenesis. Genetics. 1993 Oct;135(2):489–505. doi: 10.1093/genetics/135.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Houle D., Hoffmaster D. K., Assimacopoulos S., Charlesworth B. The genomic mutation rate for fitness in Drosophila. Nature. 1992 Sep 3;359(6390):58–60. doi: 10.1038/359058a0. [DOI] [PubMed] [Google Scholar]
  6. Houle D., Hughes K. A., Hoffmaster D. K., Ihara J., Assimacopoulos S., Canada D., Charlesworth B. The effects of spontaneous mutation on quantitative traits. I. Variances and covariances of life history traits. Genetics. 1994 Nov;138(3):773–785. doi: 10.1093/genetics/138.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Keightley P. D., Mackay T. F., Caballero A. Accounting for bias in estimates of the rate of polygenic mutation. Proc Biol Sci. 1993 Sep 22;253(1338):291–296. doi: 10.1098/rspb.1993.0116. [DOI] [PubMed] [Google Scholar]
  8. Keightley P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. doi: 10.1093/genetics/138.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lynch M. The rate of polygenic mutation. Genet Res. 1988 Apr;51(2):137–148. doi: 10.1017/s0016672300024150. [DOI] [PubMed] [Google Scholar]
  10. López M. A., López-Fanjul C. Spontaneous mutation for a quantitative trait in Drosophila melanogaster. II. Distribution of mutant effects on the trait and fitness. Genet Res. 1993 Apr;61(2):117–126. doi: 10.1017/s0016672300031220. [DOI] [PubMed] [Google Scholar]
  11. Mackay T. F., Fry J. D., Lyman R. F., Nuzhdin S. V. Polygenic mutation in Drosophila melanogaster: estimates from response to selection of inbred strains. Genetics. 1994 Mar;136(3):937–951. doi: 10.1093/genetics/136.3.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mukai T. The Genetic Structure of Natural Populations of DROSOPHILA MELANOGASTER. VII Synergistic Interaction of Spontaneous Mutant Polygenes Controlling Viability. Genetics. 1969 Mar;61(3):749–761. doi: 10.1093/genetics/61.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roff D. A., Mousseau T. A. Quantitative genetics and fitness: lessons from Drosophila. Heredity (Edinb) 1987 Feb;58(Pt 1):103–118. doi: 10.1038/hdy.1987.15. [DOI] [PubMed] [Google Scholar]
  14. Santiago E., Albornoz J., Domínguez A., Toro M. A., López-Fanjul C. The distribution of spontaneous mutations on quantitative traits and fitness in Drosophila melanogaster. Genetics. 1992 Nov;132(3):771–781. doi: 10.1093/genetics/132.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Simmons M. J., Crow J. F. Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977;11:49–78. doi: 10.1146/annurev.ge.11.120177.000405. [DOI] [PubMed] [Google Scholar]
  16. Yasuda G. K., Schubiger G., Wakimoto B. T. Genetic characterization of ms (3) K81, a paternal effect gene of Drosophila melanogaster. Genetics. 1995 May;140(1):219–229. doi: 10.1093/genetics/140.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES