Skip to main content
Genetics logoLink to Genetics
. 1996 Jun;143(2):839–848. doi: 10.1093/genetics/143.2.839

Age-Specific Patterns of Genetic Variance in Drosophila Melanogaster. I. Mortality

DEL Promislow 1, M Tatar 1, A A Khazaeli 1, J W Curtsinger 1
PMCID: PMC1207342  PMID: 8725232

Abstract

PETER MEDAWAR proposed that senescence arises from an age-related decline in the force of selection, which allows late-acting deleterious mutations to accumulate. Subsequent workers have suggested that mutation accumulation could produce an age-related increase in additive genetic variance (V(A)) for fitness traits, as recently found in Drosophila melanogaster. Here we report results from a genetic analysis of mortality in 65,134 D. melanogaster. Additive genetic variance for female mortality rates increases from 0.007 in the first week of life to 0.325 by the third week, and then declines to 0.002 by the seventh week. Males show a similar pattern, though total variance is lower than in females. In contrast to a predicted divergence in mortality curves, mortality curves of different genotypes are roughly parallel. Using a three-parameter model, we find significant V(A) for the slope and constant term of the curve describing age-specific mortality rates, and also for the rate at which mortality decelerates late in life. These results fail to support a prediction derived from MEDAWAR's ``mutation accumulation'' theory for the evolution of senescence. However, our results could be consistent with alternative interpretations of evolutionary models of aging.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Curtsinger J. W., Fukui H. H., Townsend D. R., Vaupel J. W. Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster. Science. 1992 Oct 16;258(5081):461–463. doi: 10.1126/science.1411541. [DOI] [PubMed] [Google Scholar]
  2. Economos A. C. Rate of aging, rate of dying and the mechanism of mortality. Arch Gerontol Geriatr. 1982 May;1(1):3–27. doi: 10.1016/0167-4943(82)90003-6. [DOI] [PubMed] [Google Scholar]
  3. Finch C. E., Pike M. C., Witten M. Slow mortality rate accelerations during aging in some animals approximate that of humans. Science. 1990 Aug 24;249(4971):902–905. doi: 10.1126/science.2392680. [DOI] [PubMed] [Google Scholar]
  4. Graves J. L., Jr, Mueller L. D. Population density effects on longevity. Genetica. 1993;91(1-3):99–109. doi: 10.1007/BF01435991. [DOI] [PubMed] [Google Scholar]
  5. Houle D., Hughes K. A., Hoffmaster D. K., Ihara J., Assimacopoulos S., Canada D., Charlesworth B. The effects of spontaneous mutation on quantitative traits. I. Variances and covariances of life history traits. Genetics. 1994 Nov;138(3):773–785. doi: 10.1093/genetics/138.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hughes K. A., Charlesworth B. A genetic analysis of senescence in Drosophila. Nature. 1994 Jan 6;367(6458):64–66. doi: 10.1038/367064a0. [DOI] [PubMed] [Google Scholar]
  7. Khazaeli A. A., Xiu L., Curtsinger J. W. Stress experiments as a means of investigating age-specific mortality in Drosophila melanogaster. Exp Gerontol. 1995 Mar-Apr;30(2):177–184. doi: 10.1016/0531-5565(94)00058-1. [DOI] [PubMed] [Google Scholar]
  8. Kosuda K. The aging effect on male mating activity in Drosophila melanogaster. Behav Genet. 1985 May;15(3):297–303. doi: 10.1007/BF01065984. [DOI] [PubMed] [Google Scholar]
  9. Mousseau T. A., Roff D. A. Natural selection and the heritability of fitness components. Heredity (Edinb) 1987 Oct;59(Pt 2):181–197. doi: 10.1038/hdy.1987.113. [DOI] [PubMed] [Google Scholar]
  10. Murray V. Are transposons a cause of ageing? Mutat Res. 1990 Mar;237(2):59–63. doi: 10.1016/0921-8734(90)90011-f. [DOI] [PubMed] [Google Scholar]
  11. Nusbaum T. J., Graves J. L., Mueller L. D., Rose M. R. Fruit fly aging and mortality. Science. 1993 Jun 11;260(5114):1567–1569. doi: 10.1126/science.8503001. [DOI] [PubMed] [Google Scholar]
  12. Roff D. A., Mousseau T. A. Quantitative genetics and fitness: lessons from Drosophila. Heredity (Edinb) 1987 Feb;58(Pt 1):103–118. doi: 10.1038/hdy.1987.15. [DOI] [PubMed] [Google Scholar]
  13. Rose M. R., Charlesworth B. Genetics of life history in Drosophila melanogaster. I. Sib analysis of adult females. Genetics. 1981 Jan;97(1):173–186. doi: 10.1093/genetics/97.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rose M., Charlesworth B. A test of evolutionary theories of senescence. Nature. 1980 Sep 11;287(5778):141–142. doi: 10.1038/287141a0. [DOI] [PubMed] [Google Scholar]
  15. Tatar M., Promislow D. E., Khazaeli A. A., Curtsinger J. W. Age-specific patterns of genetic variance in Drosophila melanogaster. II. Fecundity and its genetic covariance with age-specific mortality. Genetics. 1996 Jun;143(2):849–858. doi: 10.1093/genetics/143.2.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vaupel J. W., Johnson T. E., Lithgow G. J. Rates of mortality in populations of Caenorhabditis elegans. Science. 1994 Nov 4;266(5186):826–828. doi: 10.1126/science.7973641. [DOI] [PubMed] [Google Scholar]
  17. Weber K. E., Diggins L. T. Increased selection response in larger populations. II. Selection for ethanol vapor resistance in Drosophila melanogaster at two population sizes. Genetics. 1990 Jul;125(3):585–597. doi: 10.1093/genetics/125.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Witten M. Might stochasticity and sampling variation be a possible explanation for variation in clonal population survival curves. Mech Ageing Dev. 1994 Mar;73(3):223–248. doi: 10.1016/0047-6374(94)90054-x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES