Abstract
Under the mutation accumulation model of senescence, it was predicted that the additive genetic variance (V(A)) for fitness traits will increase with age. We measured age-specific mortality and fecundity from 65,134 Drosophila melanogaster and estimated genetic variance components, based on reciprocal crosses of extracted second chromosome lines. Elsewhere we report the results for mortality. Here, for fecundity, we report a bimodal pattern for V(A) with peaks at 3 days and at 17-31 days. Under the antagonistic pleiotropy model of senescence, it was predicted that negative correlations will exist between early and late life history traits. For fecundity itself we find positive genetic correlations among age classes >3 days but negative nonsignificant correlations between fecundity at 3 days and at older age classes. For fecundity vs. age-specific mortality, we find positive fitness correlations (negative genetic correlations) among the traits at all ages >3 days but a negative fitness correlation between fecundity at 3 days and mortality at the oldest ages (positive genetic correlations). For age-specific mortality itself we find overwhelmingly positive genetic correlations among all age classes. The data suggest that mutation accumulation may be a major source of standing genetic variance for senescence.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barton N. H. Pleiotropic models of quantitative variation. Genetics. 1990 Mar;124(3):773–782. doi: 10.1093/genetics/124.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman T., Liddle L. F., Kalb J. M., Wolfner M. F., Partridge L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature. 1995 Jan 19;373(6511):241–244. doi: 10.1038/373241a0. [DOI] [PubMed] [Google Scholar]
- Clark A. G., Guadalupe R. N. Probing the evolution of senescence in Drosophila melanogaster with P-element tagging. Genetica. 1995;96(3):225–234. doi: 10.1007/BF01439576. [DOI] [PubMed] [Google Scholar]
- Cockerham C. C., Weir B. S. Quadratic analyses of reciprocal crosses. Biometrics. 1977 Mar;33(1):187–203. [PubMed] [Google Scholar]
- Curtsinger J. W., Fukui H. H., Khazaeli A. A., Kirscher A., Pletcher S. D., Promislow D. E., Tatar M. Genetic variation and aging. Annu Rev Genet. 1995;29:553–575. doi: 10.1146/annurev.ge.29.120195.003005. [DOI] [PubMed] [Google Scholar]
- Dobzhansky T, Spassky B. Genetics of Natural Populations. Xxi. Concealed Variability in Two Sympatric Species of Drosophila. Genetics. 1953 Sep;38(5):471–484. doi: 10.1093/genetics/38.5.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HIRAIZUMI Y. Negative correction between rate of development and female fertility in Drosophila melanogaster. Genetics. 1961 Jun;46:615–624. doi: 10.1093/genetics/46.6.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houle D., Hughes K. A., Hoffmaster D. K., Ihara J., Assimacopoulos S., Canada D., Charlesworth B. The effects of spontaneous mutation on quantitative traits. I. Variances and covariances of life history traits. Genetics. 1994 Nov;138(3):773–785. doi: 10.1093/genetics/138.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes K. A., Charlesworth B. A genetic analysis of senescence in Drosophila. Nature. 1994 Jan 6;367(6458):64–66. doi: 10.1038/367064a0. [DOI] [PubMed] [Google Scholar]
- Kirkwood T. B., Rose M. R. Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond B Biol Sci. 1991 Apr 29;332(1262):15–24. doi: 10.1098/rstb.1991.0028. [DOI] [PubMed] [Google Scholar]
- Kosuda K. The aging effect on male mating activity in Drosophila melanogaster. Behav Genet. 1985 May;15(3):297–303. doi: 10.1007/BF01065984. [DOI] [PubMed] [Google Scholar]
- Lande R. The Genetic Covariance between Characters Maintained by Pleiotropic Mutations. Genetics. 1980 Jan;94(1):203–215. doi: 10.1093/genetics/94.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lande R. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet Res. 1975 Dec;26(3):221–235. doi: 10.1017/s0016672300016037. [DOI] [PubMed] [Google Scholar]
- Mukai T., Yamazaki T. The genetic structure of natural populations of Drosophila melanogaster. X. Developmental time and viability. Genetics. 1971 Nov;69(3):385–398. doi: 10.1093/genetics/69.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Partridge L., Barton N. H. Optimality, mutation and the evolution of ageing. Nature. 1993 Mar 25;362(6418):305–311. doi: 10.1038/362305a0. [DOI] [PubMed] [Google Scholar]
- Promislow D. E., Tatar M., Khazaeli A. A., Curtsinger J. W. Age-specific patterns of genetic variance in Drosophila melanogaster. I. Mortality. Genetics. 1996 Jun;143(2):839–848. doi: 10.1093/genetics/143.2.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose M. R., Charlesworth B. Genetics of life history in Drosophila melanogaster. I. Sib analysis of adult females. Genetics. 1981 Jan;97(1):173–186. doi: 10.1093/genetics/97.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose M. R., Charlesworth B. Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments. Genetics. 1981 Jan;97(1):187–196. doi: 10.1093/genetics/97.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simmons M. J., Preston C. R., Engels W. R. Pleiotropic Effects on Fitness of Mutations Affecting Viability in DROSOPHILA MELANOGASTER. Genetics. 1980 Feb;94(2):467–475. doi: 10.1093/genetics/94.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stearns S. C., Kaiser M. The effects of enhanced expression of elongation factor EF-1 alpha on lifespan in Drosophila melanogaster. IV. A summary of three experiments. Genetica. 1993;91(1-3):167–182. doi: 10.1007/BF01435996. [DOI] [PubMed] [Google Scholar]
- Tucić N., Cvetković D., Milanović D. The genetic variation and covariation among fitness components in Drosophila melanogaster females and males. Heredity (Edinb) 1988 Feb;60(Pt 1):55–60. doi: 10.1038/hdy.1988.9. [DOI] [PubMed] [Google Scholar]
- Weber K. E., Diggins L. T. Increased selection response in larger populations. II. Selection for ethanol vapor resistance in Drosophila melanogaster at two population sizes. Genetics. 1990 Jul;125(3):585–597. doi: 10.1093/genetics/125.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]