Skip to main content
Genetics logoLink to Genetics
. 1996 Jun;143(2):961–972. doi: 10.1093/genetics/143.2.961

Single and Double Infections with Wolbachia in the Parasitic Wasp Nasonia Vitripennis: Effects on Compatibility

M J Perrot-Minnot 1, L R Guo 1, J H Werren 1
PMCID: PMC1207352  PMID: 8725242

Abstract

Wolbachia are cytoplasmically inherited bacteria responsible for reproductive incompatibility in a wide range of insects. There has been little exploration, however, of within species Wolbachia polymorphisms and their effects on compatibility. Here we show that some strains of the parasitic wasp Nasonia vitripennis are infected with two distinct bacterial strains (A and B) whereas others are singly infected (A or B). Double and single infections are confirmed by both PCR amplification and Southern analysis of genomic DNA. Furthermore, it is shown that prolonged larval diapause (the overwintering stage of the wasp) of a double-infected strain can lead to stochastic loss of one or both bacterial strains. After diapause of a double-infected line, sublines were produced with AB, A only, B only or no Wolbachia. A and B sublines are bidirectionally incompatible, whereas males from AB lines are unidirectionally incompatible with females of A and B sublines. Results therefore show rapid development of bidirectional incompatibility within a species due to segregation of associated symbiotic bacteria.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr A. R. Cytoplasmic incompatibility in natural populations of a mosquito, Culex pipiens L. Nature. 1980 Jan 3;283(5742):71–72. doi: 10.1038/283071a0. [DOI] [PubMed] [Google Scholar]
  2. Braig H. R., Guzman H., Tesh R. B., O'Neill S. L. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature. 1994 Feb 3;367(6462):453–455. doi: 10.1038/367453a0. [DOI] [PubMed] [Google Scholar]
  3. Breeuwer J. A., Stouthamer R., Barns S. M., Pelletier D. A., Weisburg W. G., Werren J. H. Phylogeny of cytoplasmic incompatibility micro-organisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Mol Biol. 1992;1(1):25–36. doi: 10.1111/j.1365-2583.1993.tb00074.x. [DOI] [PubMed] [Google Scholar]
  4. Breeuwer J. A., Werren J. H. Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. Genetics. 1993 Oct;135(2):565–574. doi: 10.1093/genetics/135.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breeuwer J. A., Werren J. H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 1990 Aug 9;346(6284):558–560. doi: 10.1038/346558a0. [DOI] [PubMed] [Google Scholar]
  6. Bressac C., Rousset F. The reproductive incompatibility system in Drosophila simulans: DAPI-staining analysis of the Wolbachia symbionts in sperm cysts. J Invertebr Pathol. 1993 May;61(3):226–230. doi: 10.1006/jipa.1993.1044. [DOI] [PubMed] [Google Scholar]
  7. Coyne J. A. Genetics and speciation. Nature. 1992 Feb 6;355(6360):511–515. doi: 10.1038/355511a0. [DOI] [PubMed] [Google Scholar]
  8. Giordano R., O'Neill S. L., Robertson H. M. Wolbachia infections and the expression of cytoplasmic incompatibility in Drosophila sechellia and D. mauritiana. Genetics. 1995 Aug;140(4):1307–1317. doi: 10.1093/genetics/140.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Merçot H., Llorente B., Jacques M., Atlan A., Montchamp-Moreau C. Variability within the Seychelles cytoplasmic incompatibility system in Drosophila simulans. Genetics. 1995 Nov;141(3):1015–1023. doi: 10.1093/genetics/141.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. O'Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699–2702. doi: 10.1073/pnas.89.7.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Reed K. M., Werren J. H. Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a comparative study of early embryonic events. Mol Reprod Dev. 1995 Apr;40(4):408–418. doi: 10.1002/mrd.1080400404. [DOI] [PubMed] [Google Scholar]
  12. Rousset F., Bouchon D., Pintureau B., Juchault P., Solignac M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc Biol Sci. 1992 Nov 23;250(1328):91–98. doi: 10.1098/rspb.1992.0135. [DOI] [PubMed] [Google Scholar]
  13. Rousset F., Solignac M. Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6389–6393. doi: 10.1073/pnas.92.14.6389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rousset F., de Stordeur E. Properties of Drosophila simulans strains experimentally infected by different clones of the bacterium Wolbachia. Heredity (Edinb) 1994 Apr;72(Pt 4):325–331. doi: 10.1038/hdy.1994.48. [DOI] [PubMed] [Google Scholar]
  15. Ryan S. L., Saul G. B., 2nd, Conner G. W. Aberrant segregation of R-locus genes in male progeny from incompatible crosses in Mormoniella. J Hered. 1985 Jan-Feb;76(1):21–26. doi: 10.1093/oxfordjournals.jhered.a110011. [DOI] [PubMed] [Google Scholar]
  16. Ryan S. L., Saul G. B., 2nd Post-fertilization effect of incompatibility factors in Mormoniella. Mol Gen Genet. 1968;103(1):29–36. doi: 10.1007/BF00271154. [DOI] [PubMed] [Google Scholar]
  17. Sinkins S. P., Braig H. R., O'Neill S. L. Wolbachia pipientis: bacterial density and unidirectional cytoplasmic incompatibility between infected populations of Aedes albopictus. Exp Parasitol. 1995 Nov;81(3):284–291. doi: 10.1006/expr.1995.1119. [DOI] [PubMed] [Google Scholar]
  18. Sinkins S. P., Braig H. R., O'Neill S. L. Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proc Biol Sci. 1995 Sep 22;261(1362):325–330. doi: 10.1098/rspb.1995.0154. [DOI] [PubMed] [Google Scholar]
  19. Stevens L. Environmental factors affecting reproductive incompatibility in flour beetles, genus Tribolium. J Invertebr Pathol. 1989 Jan;53(1):78–84. doi: 10.1016/0022-2011(89)90076-1. [DOI] [PubMed] [Google Scholar]
  20. Stouthamer R., Breeuwert J. A., Luck R. F., Werren J. H. Molecular identification of microorganisms associated with parthenogenesis. Nature. 1993 Jan 7;361(6407):66–68. doi: 10.1038/361066a0. [DOI] [PubMed] [Google Scholar]
  21. Wade M. J., Chang N. W. Increased male fertility in Tribolium confusum beetles after infection with the intracellular parasite Wolbachia. Nature. 1995 Jan 5;373(6509):72–74. doi: 10.1038/373072a0. [DOI] [PubMed] [Google Scholar]
  22. Walsh P. S., Metzger D. A., Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 1991 Apr;10(4):506–513. [PubMed] [Google Scholar]
  23. Yen J. H., Barr A. R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature. 1971 Aug 27;232(5313):657–658. doi: 10.1038/232657a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES