Abstract
We describe a genetic mosaic analysis procedure in which Caenorhabditis elegans mosaics are generated by spontaneous loss of an extrachromosomal array. This technique allows almost any C. elegans gene that can be used in germline transformation experiments to be used in mosaic analysis experiments. We identified a cosmid clone that rescues the mutant phenotype of ncl-1, so that this cell-autonomous marker could be used to analyze mosaic animals. To determine the sites of action for unc-29 and lin-31, an extrachromosomal array was constructed containing the ncl-1(+) cosmid linked to lin-31(+) and unc-29(+) cosmids. This array is mitotically unstable and can be lost to produce a clone of mutant cells. The specific cell division at which the extrachromosomal array had been lost was deduced by scoring the Ncl phenotypes of individual cells in genetic mosaics. The Unc-29 and Lin-31 phenotypes were then scored in these animals to determine in which cells these genes are required. This analysis showed that unc-29, which encodes a subunit of the acetylcholine receptor, acts in the body muscle cells. Furthermore, lin-31, which specifies cell fates during vulval induction and encodes a putative transcription factor similar to HNF-3/fork head, acts in the Pn.p cells.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albertson D. G., Thomson J. N. The pharynx of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1976 Aug 10;275(938):299–325. doi: 10.1098/rstb.1976.0085. [DOI] [PubMed] [Google Scholar]
- Austin J., Kimble J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell. 1987 Nov 20;51(4):589–599. doi: 10.1016/0092-8674(87)90128-0. [DOI] [PubMed] [Google Scholar]
- Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark S. G., Chisholm A. D., Horvitz H. R. Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39. Cell. 1993 Jul 16;74(1):43–55. doi: 10.1016/0092-8674(93)90293-y. [DOI] [PubMed] [Google Scholar]
- Costa M., Weir M., Coulson A., Sulston J., Kenyon C. Posterior pattern formation in C. elegans involves position-specific expression of a gene containing a homeobox. Cell. 1988 Dec 2;55(5):747–756. doi: 10.1016/0092-8674(88)90131-6. [DOI] [PubMed] [Google Scholar]
- Coulson A., Sulston J., Brenner S., Karn J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7821–7825. doi: 10.1073/pnas.83.20.7821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenmann D. M., Kim S. K. Signal transduction and cell fate specification during Caenorhabditis elegans vulval development. Curr Opin Genet Dev. 1994 Aug;4(4):508–516. doi: 10.1016/0959-437x(94)90065-b. [DOI] [PubMed] [Google Scholar]
- Ferguson E. L., Horvitz H. R. Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics. 1985 May;110(1):17–72. doi: 10.1093/genetics/110.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleming J. T., Tornoe C., Riina H. A., Coadwell J., Lewis J. A., Sattelle D. B. Acetylcholine receptor molecules of the nematode Caenorhabditis elegans. EXS. 1993;63:65–80. doi: 10.1007/978-3-0348-7265-2_4. [DOI] [PubMed] [Google Scholar]
- Hedgecock E. M., Herman R. K. The ncl-1 gene and genetic mosaics of Caenorhabditis elegans. Genetics. 1995 Nov;141(3):989–1006. doi: 10.1093/genetics/141.3.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herman M. A., Vassilieva L. L., Horvitz H. R., Shaw J. E., Herman R. K. The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell. 1995 Oct 6;83(1):101–110. doi: 10.1016/0092-8674(95)90238-4. [DOI] [PubMed] [Google Scholar]
- Herman R. K. Analysis of genetic mosaics of the nematode Caneorhabditis elegans. Genetics. 1984 Sep;108(1):165–180. doi: 10.1093/genetics/108.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herman R. K., Hedgecock E. M. Limitation of the size of the vulval primordium of Caenorhabditis elegans by lin-15 expression in surrounding hypodermis. Nature. 1990 Nov 8;348(6297):169–171. doi: 10.1038/348169a0. [DOI] [PubMed] [Google Scholar]
- Herman R. K. Mosaic analysis. Methods Cell Biol. 1995;48:123–146. [PubMed] [Google Scholar]
- Hodgkin J., Plasterk R. H., Waterston R. H. The nematode Caenorhabditis elegans and its genome. Science. 1995 Oct 20;270(5235):410–414. doi: 10.1126/science.270.5235.410. [DOI] [PubMed] [Google Scholar]
- Horvitz H. R., Sternberg P. W. Multiple intercellular signalling systems control the development of the Caenorhabditis elegans vulva. Nature. 1991 Jun 13;351(6327):535–541. doi: 10.1038/351535a0. [DOI] [PubMed] [Google Scholar]
- Hoskins R., Hajnal A. F., Harp S. A., Kim S. K. The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development. 1996 Jan;122(1):97–111. doi: 10.1242/dev.122.1.97. [DOI] [PubMed] [Google Scholar]
- Hunter C. P., Wood W. B. Evidence from mosaic analysis of the masculinizing gene her-1 for cell interactions in C. elegans sex determination. Nature. 1992 Feb 6;355(6360):551–555. doi: 10.1038/355551a0. [DOI] [PubMed] [Google Scholar]
- Lackner M. R., Kornfeld K., Miller L. M., Horvitz H. R., Kim S. K. A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Dev. 1994 Jan;8(2):160–173. doi: 10.1101/gad.8.2.160. [DOI] [PubMed] [Google Scholar]
- Miller L. M., Gallegos M. E., Morisseau B. A., Kim S. K. lin-31, a Caenorhabditis elegans HNF-3/fork head transcription factor homolog, specifies three alternative cell fates in vulval development. Genes Dev. 1993 Jun;7(6):933–947. doi: 10.1101/gad.7.6.933. [DOI] [PubMed] [Google Scholar]
- Simske J. S., Kim S. K. Sequential signalling during Caenorhabditis elegans vulval induction. Nature. 1995 May 11;375(6527):142–146. doi: 10.1038/375142a0. [DOI] [PubMed] [Google Scholar]
- Sternberg P. W., Horvitz H. R. Pattern formation during vulval development in C. elegans. Cell. 1986 Mar 14;44(5):761–772. doi: 10.1016/0092-8674(86)90842-1. [DOI] [PubMed] [Google Scholar]
- Sternberg P. W. Lateral inhibition during vulval induction in Caenorhabditis elegans. Nature. 1988 Oct 6;335(6190):551–554. doi: 10.1038/335551a0. [DOI] [PubMed] [Google Scholar]
- Stinchcomb D. T., Shaw J. E., Carr S. H., Hirsh D. Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol Cell Biol. 1985 Dec;5(12):3484–3496. doi: 10.1128/mcb.5.12.3484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sulston J. E., Schierenberg E., White J. G., Thomson J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983 Nov;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4. [DOI] [PubMed] [Google Scholar]
- Thomas J. H., Stern M. J., Horvitz H. R. Cell interactions coordinate the development of the C. elegans egg-laying system. Cell. 1990 Sep 21;62(6):1041–1052. doi: 10.1016/0092-8674(90)90382-o. [DOI] [PubMed] [Google Scholar]