Skip to main content
Genetics logoLink to Genetics
. 1996 Aug;143(4):1771–1783. doi: 10.1093/genetics/143.4.1771

Characterization of a Meiotic Crossover in Maize Identified by a Restriction Fragment Length Polymorphism-Based Method

MCP Timmermans 1, O P Das 1, J Messing 1
PMCID: PMC1207438  PMID: 8844163

Abstract

Genetic map lengths do not correlate directly with genome size, suggesting that meiotic recombination is not uniform throughout the genome. Further, the abundance of repeated sequences in plant genomes requires that crossing over is restricted to particular genomic regions. We used a physical mapping approach to identify these regions without the bias introduced by phenotypic selection. This approach is based on the detection of nonparental polymorphisms formed by recombination between polymorphic alleles. In an F(2) population of 48 maize plants, we identified a crossover at two of the seven restriction fragment length polymorphism loci tested. Characterization of one recombination event revealed that the crossover mapped within a 534-bp region of perfect homology between the parental alleles embedded in a 2773-bp unique sequence. No transcripts from this region could be detected. Sequences immediately surrounding the crossover site were not detectably methylated, except for an SstI site probably methylated via non-CpG or CpXpG cytosine methylation. Parental methylation patterns at this SstI site and at the flanking repetitive sequences were faithfully inherited by the recombinant allele. Our observations suggest that meiotic recombination in maize occurs between perfectly homologous sequences, within unmethylated, nonrepetitive regions of the genome.

Full Text

The Full Text of this article is available as a PDF (6.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assaad F. F., Signer E. R. Somatic and germinal recombination of a direct repeat in Arabidopsis. Genetics. 1992 Oct;132(2):553–566. doi: 10.1093/genetics/132.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Athma P., Peterson T. Ac induces homologous recombination at the maize P locus. Genetics. 1991 May;128(1):163–173. doi: 10.1093/genetics/128.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borts R. H., Haber J. E. Meiotic recombination in yeast: alteration by multiple heterozygosities. Science. 1987 Sep 18;237(4821):1459–1465. doi: 10.1126/science.2820060. [DOI] [PubMed] [Google Scholar]
  4. Bray R. A., Brink R. A. Mutation and paramutation at the R locus in maize. Genetics. 1966 Jul;54(1):137–149. doi: 10.1093/genetics/54.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bulter M. G., Dev V. G. Pallister-Killian syndrome detected by fluorescence in situ hybridization. Am J Med Genet. 1995 Jul 3;57(3):498–500. doi: 10.1002/ajmg.1320570330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carpenter A. T. Mismatch repair, gene conversion, and crossing-over in two recombination-defective mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5961–5965. doi: 10.1073/pnas.79.19.5961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Civardi L., Xia Y., Edwards K. J., Schnable P. S., Nikolau B. J. The relationship between genetic and physical distances in the cloned a1-sh2 interval of the Zea mays L. genome. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8268–8272. doi: 10.1073/pnas.91.17.8268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Das O. P., Levi-Minzi S., Koury M., Benner M., Messing J. A somatic gene rearrangement contributing to genetic diversity in maize. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7809–7813. doi: 10.1073/pnas.87.20.7809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Das O. P., Poliak E., Ward K., Messing J. A new allele of the duplicated 27kD zein locus of maize generated by homologous recombination. Nucleic Acids Res. 1991 Jun 25;19(12):3325–3330. doi: 10.1093/nar/19.12.3325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Das O. P., Ward K., Ray S., Messing J. Sequence variation between alleles reveals two types of copy correction at the 27-kDa zein locus of maize. Genomics. 1991 Dec;11(4):849–856. doi: 10.1016/0888-7543(91)90007-2. [DOI] [PubMed] [Google Scholar]
  11. Dooner H. K. Genetic Fine Structure of the BRONZE Locus in Maize. Genetics. 1986 Aug;113(4):1021–1036. doi: 10.1093/genetics/113.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dooner H. K., Kermicle J. L. The Transposable Element Ds Affects the Pattern of Intragenic Recombination at the bz and R Loci in Maize. Genetics. 1986 May;113(1):135–143. doi: 10.1093/genetics/113.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Doseff A., Martienssen R., Sundaresan V. Somatic excision of the Mu1 transposable element of maize. Nucleic Acids Res. 1991 Feb 11;19(3):579–584. doi: 10.1093/nar/19.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eggleston W. B., Alleman M., Kermicle J. L. Molecular organization and germinal instability of R-stippled maize. Genetics. 1995 Sep;141(1):347–360. doi: 10.1093/genetics/141.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Freeling M. Allelic variation at the level of intragenic recombination. Genetics. 1978 May;89(1):211–224. doi: 10.1093/genetics/89.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gal S., Pisan B., Hohn T., Grimsley N., Hohn B. Genomic homologous recombination in planta. EMBO J. 1991 Jun;10(6):1571–1578. doi: 10.1002/j.1460-2075.1991.tb07677.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gloor G. B., Nassif N. A., Johnson-Schlitz D. M., Preston C. R., Engels W. R. Targeted gene replacement in Drosophila via P element-induced gap repair. Science. 1991 Sep 6;253(5024):1110–1117. doi: 10.1126/science.1653452. [DOI] [PubMed] [Google Scholar]
  18. Goodhardt M., Cavelier P., Doyen N., Kallenbach S., Babinet C., Rougeon F. Methylation status of immunoglobulin kappa gene segments correlates with their recombination potential. Eur J Immunol. 1993 Aug;23(8):1789–1795. doi: 10.1002/eji.1830230809. [DOI] [PubMed] [Google Scholar]
  19. Hayden M. S., Byers B. Minimal extent of homology required for completion of meiotic recombination in Saccharomyces cerevisiae. Dev Genet. 1992;13(6):498–514. doi: 10.1002/dvg.1020130611. [DOI] [PubMed] [Google Scholar]
  20. Hsieh C. L., Lieber M. R. CpG methylated minichromosomes become inaccessible for V(D)J recombination after undergoing replication. EMBO J. 1992 Jan;11(1):315–325. doi: 10.1002/j.1460-2075.1992.tb05054.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Johns M. A., Strommer J. N., Freeling M. Exceptionally High Levels of Restriction Site Polymorphism in DNA near the Maize Adh1 Gene. Genetics. 1983 Nov;105(3):733–743. doi: 10.1093/genetics/105.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jorgensen R. A. Cosuppression, flower color patterns, and metastable gene expression States. Science. 1995 May 5;268(5211):686–691. doi: 10.1126/science.268.5211.686. [DOI] [PubMed] [Google Scholar]
  23. Kirihara J. A., Petri J. B., Messing J. Isolation and sequence of a gene encoding a methionine-rich 10-kDa zein protein from maize. Gene. 1988 Nov 30;71(2):359–370. doi: 10.1016/0378-1119(88)90053-4. [DOI] [PubMed] [Google Scholar]
  24. Kupiec M., Petes T. D. Allelic and ectopic recombination between Ty elements in yeast. Genetics. 1988 Jul;119(3):549–559. doi: 10.1093/genetics/119.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kupiec M., Petes T. D. Meiotic recombination between repeated transposable elements in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jul;8(7):2942–2954. doi: 10.1128/mcb.8.7.2942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lowe B., Mathern J., Hake S. Active Mutator elements suppress the knotted phenotype and increase recombination at the Kn1-O tandem duplication. Genetics. 1992 Nov;132(3):813–822. doi: 10.1093/genetics/132.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Martienssen R., Baron A. Coordinate suppression of mutations caused by Robertson's mutator transposons in maize. Genetics. 1994 Mar;136(3):1157–1170. doi: 10.1093/genetics/136.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Meagher R. B., McLean M. D., Arnold J. Recombination within a subclass of restriction fragment length polymorphisms may help link classical and molecular genetics. Genetics. 1988 Nov;120(3):809–818. doi: 10.1093/genetics/120.3.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nelson O. E. The WAXY Locus in Maize. II. the Location of the Controlling Element Alleles. Genetics. 1968 Nov;60(3):507–524. doi: 10.1093/genetics/60.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ohta K., Shibata T., Nicolas A. Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J. 1994 Dec 1;13(23):5754–5763. doi: 10.1002/j.1460-2075.1994.tb06913.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Patterson G. I., Kubo K. M., Shroyer T., Chandler V. L. Sequences required for paramutation of the maize b gene map to a region containing the promoter and upstream sequences. Genetics. 1995 Aug;140(4):1389–1406. doi: 10.1093/genetics/140.4.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Peterhans A., Schlüpmann H., Basse C., Paszkowski J. Intrachromosomal recombination in plants. EMBO J. 1990 Nov;9(11):3437–3445. doi: 10.1002/j.1460-2075.1990.tb07551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ralston E. J., English J. J., Dooner H. K. Sequence of three bronze alleles of maize and correlation with the genetic fine structure. Genetics. 1988 May;119(1):185–197. doi: 10.1093/genetics/119.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roeder G. S. Chromosome synapsis and genetic recombination: their roles in meiotic chromosome segregation. Trends Genet. 1990 Dec;6(12):385–389. doi: 10.1016/0168-9525(90)90297-j. [DOI] [PubMed] [Google Scholar]
  35. Rossignol J. L., Faugeron G. MIP: an epigenetic gene silencing process in Ascobolus immersus. Curr Top Microbiol Immunol. 1995;197:179–191. doi: 10.1007/978-3-642-79145-1_12. [DOI] [PubMed] [Google Scholar]
  36. Rothstein R. Double-strand-break repair, gene conversion, and postdivision segregation. Cold Spring Harb Symp Quant Biol. 1984;49:629–637. doi: 10.1101/sqb.1984.049.01.071. [DOI] [PubMed] [Google Scholar]
  37. Sachs M. M., Dennis E. S., Gerlach W. L., Peacock W. J. Two Alleles of Maize ALCOHOL DEHYDROGENASE 1 Have 3' Structural and Poly(a) Addition Polymorphisms. Genetics. 1986 Jun;113(2):449–467. doi: 10.1093/genetics/113.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Salamini F., Lorenzoni C. Genetical analysis of glossy mutants of maize. 3. Intracistron recombination and high negative interference at the gl-1 locus. Mol Gen Genet. 1970;108(3):225–232. doi: 10.1007/BF00283352. [DOI] [PubMed] [Google Scholar]
  39. Schwartz D. Gene-controlled cytosine demethylation in the promoter region of the Ac transposable element in maize. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2789–2793. doi: 10.1073/pnas.86.8.2789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Selker E. U. Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet. 1990;24:579–613. doi: 10.1146/annurev.ge.24.120190.003051. [DOI] [PubMed] [Google Scholar]
  41. Selva E. M., New L., Crouse G. F., Lahue R. S. Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics. 1995 Mar;139(3):1175–1188. doi: 10.1093/genetics/139.3.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shattuck-Eidens D. M., Bell R. N., Neuhausen S. L., Helentjaris T. DNA sequence variation within maize and melon: observations from polymerase chain reaction amplification and direct sequencing. Genetics. 1990 Sep;126(1):207–217. doi: 10.1093/genetics/126.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shen P., Huang H. V. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics. 1986 Mar;112(3):441–457. doi: 10.1093/genetics/112.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Solovyev V. V., Salamov A. A., Lawrence C. B. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames. Nucleic Acids Res. 1994 Dec 11;22(24):5156–5163. doi: 10.1093/nar/22.24.5156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Thuriaux P. Is recombination confined to structural genes on the eukaryotic genome? Nature. 1977 Aug 4;268(5619):460–462. doi: 10.1038/268460a0. [DOI] [PubMed] [Google Scholar]
  46. Tovar J., Lichtenstein C. Somatic and Meiotic Chromosomal Recombination between Inverted Duplications in Transgenic Tobacco Plants. Plant Cell. 1992 Mar;4(3):319–332. doi: 10.1105/tpc.4.3.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Uberbacher E. C., Mural R. J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11261–11265. doi: 10.1073/pnas.88.24.11261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Waldman A. S., Liskay R. M. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol. 1988 Dec;8(12):5350–5357. doi: 10.1128/mcb.8.12.5350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wallis J. W., Chrebet G., Brodsky G., Rolfe M., Rothstein R. A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell. 1989 Jul 28;58(2):409–419. doi: 10.1016/0092-8674(89)90855-6. [DOI] [PubMed] [Google Scholar]
  50. Werr W., Frommer W. B., Maas C., Starlinger P. Structure of the sucrose synthase gene on chromosome 9 of Zea mays L. EMBO J. 1985 Jun;4(6):1373–1380. doi: 10.1002/j.1460-2075.1985.tb03789.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES