Skip to main content
Genetics logoLink to Genetics
. 1996 Sep;144(1):241–248. doi: 10.1093/genetics/144.1.241

The Effects of Natural Hybridization on the Regulation of Doubly Uniparental Mtdna Inheritance in Blue Mussels (Mytilus Spp.)

P D Rawson 1, C L Secor 1, T J Hilbish 1
PMCID: PMC1207497  PMID: 8878689

Abstract

Blue mussels in the Mytilus edulis species complex have a doubly uniparental mode of mtDNA inheritance with separate maternal and paternal mtDNA lineages. Female mussels inherit their mtDNA solely from their mother, while males inherit mtDNA from both parents. In the male gonad the paternal mtDNA is preferentially replicated so that only paternal mtDNA is transmitted from fathers to sons. Hybridization is common among differentiated blue mussel taxa; whenever it involves M. trossulus, doubly uniparental mtDNA inheritance is disrupted. We have found high frequencies of males without and females with paternal mtDNA among hybrid mussels produced by interspecific matings between M. galloprovincialis and M. trossulus. In contrast, hybridization between M. galloprovincialis and M. edulis does not affect doubly uniparental inheritance, indicating a difference in the divergence of the mechanisms regulating mtDNA inheritance among the three blue mussel taxa. Our data indicate a high frequency of disrupted mtDNA transmission in F(1) hybrids and suggest that two separate mechanisms, one regulating the transmission of paternal mtDNA to males and another inhibiting the establishment of paternal mtDNA in females, act to regulate doubly uniparental inheritance. We propose a model for the regulation of doubly uniparental inheritance that is consistent with these observations.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. A. Structure and fate of the paternal mitochondrion during early embryogenesis of Paracentrotus lividus. J Ultrastruct Res. 1968 Aug;24(3):311–321. doi: 10.1016/s0022-5320(68)90067-1. [DOI] [PubMed] [Google Scholar]
  2. Beckers M. C., Munaut C., Minet A., Matagne R. F. The fate of mitochondrial DNAs of mt+ and mt- origin in gametes and zygotes of Chlamydomonas. Curr Genet. 1991 Aug;20(3):239–243. doi: 10.1007/BF00326238. [DOI] [PubMed] [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hoeh W. R., Blakley K. H., Brown W. M. Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA. Science. 1991 Mar 22;251(5000):1488–1490. doi: 10.1126/science.1672472. [DOI] [PubMed] [Google Scholar]
  5. Longo F. J., Anderson E. Cytological aspects of fertilization in the lamellibranch, Mytilus edulis. II. Development of the male pronucleus and the association of the maternally and paternally derived chromosomes. J Exp Zool. 1969 Sep;172(1):97–119. doi: 10.1002/jez.1401720108. [DOI] [PubMed] [Google Scholar]
  6. Longo F. J., Dornfeld E. J. The fine structure of spermatid differentiation in the mussel, Mytilus edulis. J Ultrastruct Res. 1967 Oct 31;20(5):462–480. doi: 10.1016/s0022-5320(67)80113-8. [DOI] [PubMed] [Google Scholar]
  7. McConnell S. J., Yaffe M. P. Intermediate filament formation by a yeast protein essential for organelle inheritance. Science. 1993 Apr 30;260(5108):687–689. doi: 10.1126/science.8480179. [DOI] [PubMed] [Google Scholar]
  8. Meland S., Johansen S., Johansen T., Haugli K., Haugli F. Rapid disappearance of one parental mitochondrial genotype after isogamous mating in the myxomycete Physarum polycephalum. Curr Genet. 1991 Jan;19(1):55–59. doi: 10.1007/BF00362088. [DOI] [PubMed] [Google Scholar]
  9. Mirfakhrai M., Tanaka Y., Yanagisawa K. Evidence for mitochondrial DNA polymorphism and uniparental inheritance in the cellular slime mold Polysphondylium pallidum: effect of intraspecies mating on mitochondrial DNA transmission. Genetics. 1990 Mar;124(3):607–613. doi: 10.1093/genetics/124.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mogensen H. L. Exclusion of male mitochondria and plastids during syngamy in barley as a basis for maternal inheritance. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2594–2597. doi: 10.1073/pnas.85.8.2594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rawson P. D., Hilbish T. J. Evolutionary relationships among the male and female mitochondrial DNA lineages in the Mytilus edulis species complex. Mol Biol Evol. 1995 Sep;12(5):893–901. doi: 10.1093/oxfordjournals.molbev.a040266. [DOI] [PubMed] [Google Scholar]
  12. Skibinski D. O., Gallagher C., Beynon C. M. Sex-limited mitochondrial DNA transmission in the marine mussel Mytilus edulis. Genetics. 1994 Nov;138(3):801–809. doi: 10.1093/genetics/138.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sogo L. F., Yaffe M. P. Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J Cell Biol. 1994 Sep;126(6):1361–1373. doi: 10.1083/jcb.126.6.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stewart D. T., Saavedra C., Stanwood R. R., Ball A. O., Zouros E. Male and female mitochondrial DNA lineages in the blue mussel (Mytilus edulis) species group. Mol Biol Evol. 1995 Sep;12(5):735–747. doi: 10.1093/oxfordjournals.molbev.a040252. [DOI] [PubMed] [Google Scholar]
  15. Zouros E., Oberhauser Ball A., Saavedra C., Freeman K. R. An unusual type of mitochondrial DNA inheritance in the blue mussel Mytilus. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7463–7467. doi: 10.1073/pnas.91.16.7463. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES