Abstract
We tested predictions of the double-strand break repair (DSBR) model for meiotic recombination by examining the segregation patterns of small palindromic insertions, which frequently escape mismatch repair when in heteroduplex DNA. The palindromes flanked a well characterized DSB site at the ARG4 locus. The ``canonical'' DSBR model, in which only 5' ends are degraded and resolution of the four-stranded intermediate is by Holliday junction resolvase, predicts that hDNA will frequently occur on both participating chromatids in a single event. Tetrads reflecting this configuration of hDNA were rare. In addition, a class of tetrads not predicted by the canonical DSBR model was identified. This class represented events that produced hDNA in a ``trans'' configuration, on opposite strands of the same duplex on the two sides of the DSB site. Whereas most classes of convertant tetrads had typical frequencies of associated crossovers, tetrads with trans hDNA were parental for flanking markers. Modified versions of the DSBR model, including one that uses a topoisomerase to resolve the canonical DSBR intermediate, are supported by these data.
Full Text
The Full Text of this article is available as a PDF (3.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguilera A., Klein H. L. Genetic and molecular analysis of recombination events in Saccharomyces cerevisiae occurring in the presence of the hyper-recombination mutation hpr1. Genetics. 1989 Jul;122(3):503–517. doi: 10.1093/genetics/122.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alani E., Reenan R. A., Kolodner R. D. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics. 1994 May;137(1):19–39. doi: 10.1093/genetics/137.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alani E., Subbiah S., Kleckner N. The yeast RAD50 gene encodes a predicted 153-kD protein containing a purine nucleotide-binding domain and two large heptad-repeat regions. Genetics. 1989 May;122(1):47–57. doi: 10.1093/genetics/122.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allard M. W., Miyamoto M. M., Jarecki L., Kraus F., Tennant M. R. DNA systematics and evolution of the artiodactyl family Bovidae. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3972–3976. doi: 10.1073/pnas.89.9.3972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Archibald A. L., Haley C. S., Brown J. F., Couperwhite S., McQueen H. A., Nicholson D., Coppieters W., Van de Weghe A., Stratil A., Winterø A. K. The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm Genome. 1995 Mar;6(3):157–175. doi: 10.1007/BF00293008. [DOI] [PubMed] [Google Scholar]
- Arevalo E., Holder D. A., Derr J. N., Bhebhe E., Linn R. A., Ruvuna F., Davis S. K., Taylor J. F. Caprine microsatellite dinucleotide repeat polymorphisms at the SR-CRSP-1, SR-CRSP-2, SR-CRSP-3, SR-CRSP-4 and SR-CRSP-5 loci. Anim Genet. 1994 Jun;25(3):202–202. doi: 10.1111/j.1365-2052.1994.tb00124.x. [DOI] [PubMed] [Google Scholar]
- Bahri-Darwich I., Vaiman D., Olsaker I., Oustry A., Cribiu E. P. Assignment of bovine synteny groups U27 and U8 to R-banded chromosome 12 and 27, respectively. Hereditas. 1994;120(3):261–265. doi: 10.1111/j.1601-5223.1994.00261.x. [DOI] [PubMed] [Google Scholar]
- Barendse W., Armitage S. M., Kossarek L. M., Shalom A., Kirkpatrick B. W., Ryan A. M., Clayton D., Li L., Neibergs H. L., Zhang N. A genetic linkage map of the bovine genome. Nat Genet. 1994 Mar;6(3):227–235. doi: 10.1038/ng0394-227. [DOI] [PubMed] [Google Scholar]
- Beever J. E., Da Y., Ron M., Lewin H. A. A genetic map of nine loci on bovine chromosome 2. Mamm Genome. 1994 Sep;5(9):542–545. doi: 10.1007/BF00354927. [DOI] [PubMed] [Google Scholar]
- Bhebhe E., Kogi J., Holder D. A., Arevalo E., Derr J. N., Linn R. A., Ruvuna F., Davis S. K., Taylor J. F. Caprine microsatellite dinucleotide repeat polymorphisms at the SR-CRSP-6, SR-CRSP-7, SR-CRSP-8, SR-CRSP-9 and SR-CRSP-10 loci. Anim Genet. 1994 Jun;25(3):203–203. doi: 10.1111/j.1365-2052.1994.tb00125.x. [DOI] [PubMed] [Google Scholar]
- Bishop D. K., Park D., Xu L., Kleckner N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell. 1992 May 1;69(3):439–456. doi: 10.1016/0092-8674(92)90446-j. [DOI] [PubMed] [Google Scholar]
- Bishop M. D., Kappes S. M., Keele J. W., Stone R. T., Sunden S. L., Hawkins G. A., Toldo S. S., Fries R., Grosz M. D., Yoo J. A genetic linkage map for cattle. Genetics. 1994 Feb;136(2):619–639. doi: 10.1093/genetics/136.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broach J. R., Strathern J. N., Hicks J. B. Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene. 1979 Dec;8(1):121–133. doi: 10.1016/0378-1119(79)90012-x. [DOI] [PubMed] [Google Scholar]
- Buchanan F. C., Swarbrick P. A., Crawford A. M. Ovine dinucleotide repeat polymorphism at the MAF48 locus. Anim Genet. 1991;22(4):379–380. doi: 10.1111/j.1365-2052.1991.tb00697.x. [DOI] [PubMed] [Google Scholar]
- Buckland R. A., Evans H. J. Cytogenetic aspects of phylogeny in the Bovidae. I. G-banding. Cytogenet Cell Genet. 1978;21(1-2):42–63. doi: 10.1159/000130877. [DOI] [PubMed] [Google Scholar]
- Burns B. M., Taylor J. F., Herring K. L., Herring A. D., Holder M. T., Collins J. S., Guerra T. M., Sanders J. O., Davis S. K. Bovine microsatellite mononucleotide and dinucleotide repeat polymorphisms at the TEXAN6, TEXAN7, TEXAN8, TEXAN9 and TEXAN10 loci. Anim Genet. 1995 Apr;26(2):128–129. doi: 10.1111/j.1365-2052.1995.tb02654.x. [DOI] [PubMed] [Google Scholar]
- Cao L., Alani E., Kleckner N. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell. 1990 Jun 15;61(6):1089–1101. doi: 10.1016/0092-8674(90)90072-m. [DOI] [PubMed] [Google Scholar]
- Chevalet C., Corpet F. Statistical decision rules concerning synteny or independence between markers. Cytogenet Cell Genet. 1986;43(3-4):132–139. doi: 10.1159/000132311. [DOI] [PubMed] [Google Scholar]
- Chowdhary B. P., Harbitz I., Davies W., Gustavsson I. Chromosomal localization of the glucose phosphate isomerase (GPI) gene in cattle, sheep and goat by in situ hybridization--chromosomal banding homology versus molecular conservation in Bovidae. Hereditas. 1991;114(2):161–170. doi: 10.1111/j.1601-5223.1991.tb00320.x. [DOI] [PubMed] [Google Scholar]
- Claro F., Hayes H., Cribiu E. P. Identification of p and q arms of the blesbok (Damaliscus dorcas phillipsi, Alcelaphinae) RBG-banded chromosomes with comparison to other wild and domestic bovids. Cytogenet Cell Genet. 1995;70(3-4):268–272. doi: 10.1159/000134049. [DOI] [PubMed] [Google Scholar]
- Cockett N. E., Jackson S. P., Shay T. L., Nielsen D., Moore S. S., Steele M. R., Barendse W., Green R. D., Georges M. Chromosomal localization of the callipyge gene in sheep (Ovis aries) using bovine DNA markers. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3019–3023. doi: 10.1073/pnas.91.8.3019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford A. M., Dodds K. G., Ede A. J., Pierson C. A., Montgomery G. W., Garmonsway H. G., Beattie A. E., Davies K., Maddox J. F., Kappes S. W. An autosomal genetic linkage map of the sheep genome. Genetics. 1995 Jun;140(2):703–724. doi: 10.1093/genetics/140.2.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies K. P., Maddox J. F., Harrison B., Drinkwater R. Ovine dinucleotide repeat polymorphism at the CSRD226 and CSRD232 loci. Anim Genet. 1995 Oct;26(5):372–372. doi: 10.1111/j.1365-2052.1995.tb02683.x. [DOI] [PubMed] [Google Scholar]
- Davies K. P., Maddox J. F., Matthews P., Hulme D. J., Beh K. J. Ovine dinucleotide repeat polymorphism at the McM15, McM152, McM159, McM164 and McM210 loci. Anim Genet. 1995 Oct;26(5):371–371. doi: 10.1111/j.1365-2052.1995.tb02682.x. [DOI] [PubMed] [Google Scholar]
- De Massy B., Baudat F., Nicolas A. Initiation of recombination in Saccharomyces cerevisiae haploid meiosis. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11929–11933. doi: 10.1073/pnas.91.25.11929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Detloff P., Sieber J., Petes T. D. Repair of specific base pair mismatches formed during meiotic recombination in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1991 Feb;11(2):737–745. doi: 10.1128/mcb.11.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eggen A., Bahri-Darwich I., Mercier D., Vaiman D., Cribiu E. P. Assignment of bovine synteny group U2 to chromosome 9. Anim Genet. 1994 Jun;25(3):183–185. doi: 10.1111/j.1365-2052.1994.tb00108.x. [DOI] [PubMed] [Google Scholar]
- Eggen A., Oustry A., Vaiman D., Ferretti L., Fries R., Cribiu E. P. Bovine synteny group U7, previously assigned to G-banded chromosome 25 in the ISCNDA nomenclature, assigns to R-banded chromosome 29. Hereditas. 1994;121(3):295–300. doi: 10.1111/j.1601-5223.1994.00295.x. [DOI] [PubMed] [Google Scholar]
- Fan Q., Xu F., Petes T. D. Meiosis-specific double-strand DNA breaks at the HIS4 recombination hot spot in the yeast Saccharomyces cerevisiae: control in cis and trans. Mol Cell Biol. 1995 Mar;15(3):1679–1688. doi: 10.1128/mcb.15.3.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fogel S., Mortimer R., Lusnak K., Tavares F. Meiotic gene conversion: a signal of the basic recombination event in yeast. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1325–1341. doi: 10.1101/sqb.1979.043.01.152. [DOI] [PubMed] [Google Scholar]
- Foss E. J., Stahl F. W. A test of a counting model for chiasma interference. Genetics. 1995 Mar;139(3):1201–1209. doi: 10.1093/genetics/139.3.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foss E., Lande R., Stahl F. W., Steinberg C. M. Chiasma interference as a function of genetic distance. Genetics. 1993 Mar;133(3):681–691. doi: 10.1093/genetics/133.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georges M., Dietz A. B., Mishra A., Nielsen D., Sargeant L. S., Sorensen A., Steele M. R., Zhao X., Leipold H., Womack J. E. Microsatellite mapping of the gene causing weaver disease in cattle will allow the study of an associated quantitative trait locus. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1058–1062. doi: 10.1073/pnas.90.3.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georges M., Nielsen D., Mackinnon M., Mishra A., Okimoto R., Pasquino A. T., Sargeant L. S., Sorensen A., Steele M. R., Zhao X. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics. 1995 Feb;139(2):907–920. doi: 10.1093/genetics/139.2.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbertson L. A., Stahl F. W. Initiation of meiotic recombination is independent of interhomologue interactions. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11934–11937. doi: 10.1073/pnas.91.25.11934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glimp H. A. Meat goat production and marketing. J Anim Sci. 1995 Jan;73(1):291–295. doi: 10.2527/1995.731291x. [DOI] [PubMed] [Google Scholar]
- Goldway M., Sherman A., Zenvirth D., Arbel T., Simchen G. A short chromosomal region with major roles in yeast chromosome III meiotic disjunction, recombination and double strand breaks. Genetics. 1993 Feb;133(2):159–169. doi: 10.1093/genetics/133.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goyon C., Lichten M. Timing of molecular events in meiosis in Saccharomyces cerevisiae: stable heteroduplex DNA is formed late in meiotic prophase. Mol Cell Biol. 1993 Jan;13(1):373–382. doi: 10.1128/mcb.13.1.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grosse W. M., Finlay O., Kossarek L. M., Clark T. G., McGraw R. A. Five bovine microsatellite markers derived from skeletal muscle cDNA: RME01, RME11, RME23, RME25 and RME33. Anim Genet. 1995 Apr;26(2):126–127. doi: 10.1111/j.1365-2052.1995.tb02652.x. [DOI] [PubMed] [Google Scholar]
- Hanrahan V., Ede A. J., Pierson C. A., Hill D. F. Ovine microsatellites at the OarVH98, OarVH110, OarVH116, OarVH117 and OarVH130 loci. Anim Genet. 1993 Jun;24(3):223–223. doi: 10.1111/j.1365-2052.1993.tb00301.x. [DOI] [PubMed] [Google Scholar]
- Hastings P. J. Recombination in the eukaryotic nucleus. Bioessays. 1988 Aug-Sep;9(2-3):61–64. doi: 10.1002/bies.950090206. [DOI] [PubMed] [Google Scholar]
- Hayes H. C., Petit E. J. Mapping of the beta-lactoglobulin gene and of an immunoglobulin M heavy chain-like sequence to homoeologous cattle, sheep, and goat chromosomes. Mamm Genome. 1993;4(4):207–210. doi: 10.1007/BF00417564. [DOI] [PubMed] [Google Scholar]
- Hayes H. C., Popescu P., Dutrillaux B. Comparative gene mapping of lactoperoxidase, retinoblastoma, and alpha-lactalbumin genes in cattle, sheep, and goats. Mamm Genome. 1993;4(10):593–597. doi: 10.1007/BF00361391. [DOI] [PubMed] [Google Scholar]
- Hayes H., Petit E., Dutrillaux B. Comparison of RBG-banded karyotypes of cattle, sheep, and goats. Cytogenet Cell Genet. 1991;57(1):51–55. doi: 10.1159/000133114. [DOI] [PubMed] [Google Scholar]
- Hulme D. J., Silk J. P., Redwin J. M., Barendse W., Beh K. J. Ten polymorphic ovine microsatellites. Anim Genet. 1994 Dec;25(6):434–435. doi: 10.1111/j.1365-2052.1994.tb00543.x. [DOI] [PubMed] [Google Scholar]
- Hulme D. J., Smith A. J., Silk J. P., Redwin J. M., Beh K. J. Polymorphic sheep microsatellites at the McM2, McM131, McM135, McM136, McM140, McM200, McM214, McM373, McM505, McM507 and McM512 loci. Anim Genet. 1995 Oct;26(5):369–370. doi: 10.1111/j.1365-2052.1995.tb02681.x. [DOI] [PubMed] [Google Scholar]
- Iannuzzi L., Di Meo G. P. Chromosomal evolution in bovids: a comparison of cattle, sheep and goat G- and R-banded chromosomes and cytogenetic divergences among cattle, goat and river buffalo sex chromosomes. Chromosome Res. 1995 Aug;3(5):291–299. doi: 10.1007/BF00713067. [DOI] [PubMed] [Google Scholar]
- Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeanpierre M. A rapid method for the purification of DNA from blood. Nucleic Acids Res. 1987 Nov 25;15(22):9611–9611. doi: 10.1093/nar/15.22.9611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston M., Andrews S., Brinkman R., Cooper J., Ding H., Dover J., Du Z., Favello A., Fulton L., Gattung S. Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science. 1994 Sep 30;265(5181):2077–2082. doi: 10.1126/science.8091229. [DOI] [PubMed] [Google Scholar]
- Jones J. S., Prakash L. Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. Yeast. 1990 Sep-Oct;6(5):363–366. doi: 10.1002/yea.320060502. [DOI] [PubMed] [Google Scholar]
- Kaftanovskaya H. M., Serov O. L. High-resolution GTG-banded chromosomes of cattle, sheep, and goat: a comparative study. J Hered. 1994 Sep-Oct;85(5):395–400. doi: 10.1093/oxfordjournals.jhered.a111485. [DOI] [PubMed] [Google Scholar]
- Keeney S., Kleckner N. Covalent protein-DNA complexes at the 5' strand termini of meiosis-specific double-strand breaks in yeast. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11274–11278. doi: 10.1073/pnas.92.24.11274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kemp S. J., Hishida O., Wambugu J., Rink A., Longeri M. L., Ma R. Z., Da Y., Lewin H. A., Barendse W., Teale A. J. A panel of polymorphic bovine, ovine and caprine microsatellite markers. Anim Genet. 1995 Oct;26(5):299–306. doi: 10.1111/j.1365-2052.1995.tb02663.x. [DOI] [PubMed] [Google Scholar]
- Kondo Y., Mori M., Kuramoto T., Yamada J., Beckmann J. S., Simon-Chazottes D., Montagutelli X., Guénet J. L., Serikawa T. DNA segments mapped by reciprocal use of microsatellite primers between mouse and rat. Mamm Genome. 1993;4(10):571–576. doi: 10.1007/BF00361387. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Leroux C., Martin P., Mahé M. F., Levéziel H., Mercier J. C. Restriction fragment length polymorphism identification of goat alpha s1-casein alleles: a potential tool in selection of individuals carrying alleles associated with a high level protein synthesis. Anim Genet. 1990;21(4):341–351. doi: 10.1111/j.1365-2052.1990.tb01979.x. [DOI] [PubMed] [Google Scholar]
- Logue D. N., Harvey M. J. Meiosis and spermatogenesis in bulls heterozygous for a presumptive 1/29 Robertsonian translocation. J Reprod Fertil. 1978 Sep;54(1):159–165. doi: 10.1530/jrf.0.0540159. [DOI] [PubMed] [Google Scholar]
- McGill C., Shafer B., Strathern J. Coconversion of flanking sequences with homothallic switching. Cell. 1989 May 5;57(3):459–467. doi: 10.1016/0092-8674(89)90921-5. [DOI] [PubMed] [Google Scholar]
- Moore S. S., Byrne K., Berger K. T., Barendse W., McCarthy F., Womack J. E., Hetzel D. J. Characterization of 65 bovine microsatellites. Mamm Genome. 1994 Feb;5(2):84–90. doi: 10.1007/BF00292333. [DOI] [PubMed] [Google Scholar]
- Moore S. S., Sargeant L. L., King T. J., Mattick J. S., Georges M., Hetzel D. J. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics. 1991 Jul;10(3):654–660. doi: 10.1016/0888-7543(91)90448-n. [DOI] [PubMed] [Google Scholar]
- Nag D. K., White M. A., Petes T. D. Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast. Nature. 1989 Jul 27;340(6231):318–320. doi: 10.1038/340318a0. [DOI] [PubMed] [Google Scholar]
- Nasmyth K. A. Molecular genetics of yeast mating type. Annu Rev Genet. 1982;16:439–500. doi: 10.1146/annurev.ge.16.120182.002255. [DOI] [PubMed] [Google Scholar]
- Orr-Weaver T. L., Szostak J. W., Rothstein R. J. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. doi: 10.1073/pnas.78.10.6354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orr-Weaver T. L., Szostak J. W. Yeast recombination: the association between double-strand gap repair and crossing-over. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4417–4421. doi: 10.1073/pnas.80.14.4417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Padmore R., Cao L., Kleckner N. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell. 1991 Sep 20;66(6):1239–1256. doi: 10.1016/0092-8674(91)90046-2. [DOI] [PubMed] [Google Scholar]
- Pitel F., Cribiu E. P., Yerle M., Lahbib-Mansais Y., Lanneluc I., Lantier F., Gellin J. Regional localization of the ovine NRAMP gene to chromosome 2q41-->q42 by in situ hybridization. Cytogenet Cell Genet. 1995;70(1-2):116–118. doi: 10.1159/000134004. [DOI] [PubMed] [Google Scholar]
- Pitel F., Lantier I., Gellin J., Elsen J. M., Lantier F. Two polymorphic microsatellite markers close to the ovine NRAMP gene. Anim Genet. 1996 Feb;27(1):60–61. doi: 10.1111/j.1365-2052.1996.tb01184.x. [DOI] [PubMed] [Google Scholar]
- Popescu C. P., Boscher J., Hayes H. C., Ban J., Kettmann R. Chromosomal localization of the BLV receptor candidate gene in cattle, sheep, and goat. Cytogenet Cell Genet. 1995;69(1-2):50–52. doi: 10.1159/000133936. [DOI] [PubMed] [Google Scholar]
- Porter S. E., White M. A., Petes T. D. Genetic evidence that the meiotic recombination hotspot at the HIS4 locus of Saccharomyces cerevisiae does not represent a site for a symmetrically processed double-strand break. Genetics. 1993 May;134(1):5–19. doi: 10.1093/genetics/134.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randi E., Fusco G., Lorenzini R., Toso S., Tosi G. Allozyme divergence and phylogenetic relationships among Capra, Ovis and Rupicapra (Artyodactyla, Bovidae). Heredity (Edinb) 1991 Dec;67(Pt 3):281–286. doi: 10.1038/hdy.1991.91. [DOI] [PubMed] [Google Scholar]
- Resnick M. A. The repair of double-strand breaks in DNA; a model involving recombination. J Theor Biol. 1976 Jun;59(1):97–106. doi: 10.1016/s0022-5193(76)80025-2. [DOI] [PubMed] [Google Scholar]
- Rohrer G. A., Alexander L. J., Keele J. W., Smith T. P., Beattie C. W. A microsatellite linkage map of the porcine genome. Genetics. 1994 Jan;136(1):231–245. doi: 10.1093/genetics/136.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose D., Holm C. Meiosis-specific arrest revealed in DNA topoisomerase II mutants. Mol Cell Biol. 1993 Jun;13(6):3445–3455. doi: 10.1128/mcb.13.6.3445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose D., Thomas W., Holm C. Segregation of recombined chromosomes in meiosis I requires DNA topoisomerase II. Cell. 1990 Mar 23;60(6):1009–1017. doi: 10.1016/0092-8674(90)90349-j. [DOI] [PubMed] [Google Scholar]
- Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
- Ruff G., Lazary S. Evidence for linkage between the caprine leucocyte antigen (CLA) system and susceptibility to CAE virus-induced arthritis in goats. Immunogenetics. 1988;28(5):303–309. doi: 10.1007/BF00364227. [DOI] [PubMed] [Google Scholar]
- Sauer B. Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1987 Jun;7(6):2087–2096. doi: 10.1128/mcb.7.6.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultes N. P., Szostak J. W. A poly(dA.dT) tract is a component of the recombination initiation site at the ARG4 locus in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Jan;11(1):322–328. doi: 10.1128/mcb.11.1.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultes N. P., Szostak J. W. Decreasing gradients of gene conversion on both sides of the initiation site for meiotic recombination at the ARG4 locus in yeast. Genetics. 1990 Dec;126(4):813–822. doi: 10.1093/genetics/126.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwacha A., Kleckner N. Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell. 1994 Jan 14;76(1):51–63. doi: 10.1016/0092-8674(94)90172-4. [DOI] [PubMed] [Google Scholar]
- Shah R., Bennett R. J., West S. C. Genetic recombination in E. coli: RuvC protein cleaves Holliday junctions at resolution hotspots in vitro. Cell. 1994 Dec 2;79(5):853–864. doi: 10.1016/0092-8674(94)90074-4. [DOI] [PubMed] [Google Scholar]
- Shinohara A., Ogawa H., Ogawa T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell. 1992 May 1;69(3):457–470. doi: 10.1016/0092-8674(92)90447-k. [DOI] [PubMed] [Google Scholar]
- Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simi L. B., Sasi R., Lingrel J. B., Lin C. C. Mapping of the goat beta-globin gene cluster to a region of chromosome 7 by in situ hybridization. J Hered. 1989 May-Jun;80(3):246–249. doi: 10.1093/oxfordjournals.jhered.a110843. [DOI] [PubMed] [Google Scholar]
- Smith A. J., Hulme D. J., Beh K. J. Five polymorphic ovine microsatellites. Anim Genet. 1995 Apr;26(2):124–125. doi: 10.1111/j.1365-2052.1995.tb02649.x. [DOI] [PubMed] [Google Scholar]
- Sun H. S., Barendse W., Kirkpatrick B. W. Rapid communication: UWCA46, a polymorphic bovine microsatellite marker. J Anim Sci. 1995 May;73(5):1530–1530. doi: 10.2527/1995.7351530x. [DOI] [PubMed] [Google Scholar]
- Sun H., Treco D., Schultes N. P., Szostak J. W. Double-strand breaks at an initiation site for meiotic gene conversion. Nature. 1989 Mar 2;338(6210):87–90. doi: 10.1038/338087a0. [DOI] [PubMed] [Google Scholar]
- Sun H., Treco D., Szostak J. W. Extensive 3'-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell. 1991 Mar 22;64(6):1155–1161. doi: 10.1016/0092-8674(91)90270-9. [DOI] [PubMed] [Google Scholar]
- Sweetser D. B., Hough H., Whelden J. F., Arbuckle M., Nickoloff J. A. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity. Mol Cell Biol. 1994 Jun;14(6):3863–3875. doi: 10.1128/mcb.14.6.3863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
- Thaler D. S., Stahl M. M., Stahl F. W. Tests of the double-strand-break repair model for red-mediated recombination of phage lambda and plasmid lambda dv. Genetics. 1987 Aug;116(4):501–511. doi: 10.1093/genetics/116.4.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thieven U., Harlizius B., Simon D. Dinucleotide repeat polymorphism at the bovine HAUT1 and HAUT14 loci. Anim Genet. 1995 Apr;26(2):123–123. doi: 10.1111/j.1365-2052.1995.tb02646.x. [DOI] [PubMed] [Google Scholar]
- Vaiman D., Eggen A., Mercier D., Bahri-Darwich I., Grohs C., Bruneau D., Laurent P., Chaput B., Oustry A., Frelat G. A genetic and physical map of bovine chromosome 3. Anim Genet. 1995 Feb;26(1):21–25. doi: 10.1111/j.1365-2052.1995.tb02614.x. [DOI] [PubMed] [Google Scholar]
- Vaiman D., Imam-Ghali M., Moazami-Goudarzi K., Guérin G., Grohs C., Levéziel H., Saïdi-Mehtar N. Conservation of a syntenic group of microsatellite loci between cattle and sheep. Mamm Genome. 1994 May;5(5):310–314. doi: 10.1007/BF00389547. [DOI] [PubMed] [Google Scholar]
- Vaiman D., Mercier D., Eggen A., Bahri-Darwich I., Grohs C., Cribiu E. P., Dolf G., Oustry A., Guérin G., Levéziel H. A genetic and physical map of bovine chromosome 11. Mamm Genome. 1994 Sep;5(9):553–556. doi: 10.1007/BF00354929. [DOI] [PubMed] [Google Scholar]
- Vaiman D., Mercier D., Moazami-Goudarzi K., Eggen A., Ciampolini R., Lépingle A., Velmala R., Kaukinen J., Varvio S. L., Martin P. A set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism. Mamm Genome. 1994 May;5(5):288–297. doi: 10.1007/BF00389543. [DOI] [PubMed] [Google Scholar]
- Vassart M., Séguéla A., Hayes H. Chromosomal evolution in gazelles. J Hered. 1995 May-Jun;86(3):216–227. doi: 10.1093/oxfordjournals.jhered.a111565. [DOI] [PubMed] [Google Scholar]
- Velmala R., Vaiman D., Virta A., Mercier D., Levéziel H. Polymorphic bovine microsatellites INRAMTT178, INRAMTT180 and INRAMTT183. Anim Genet. 1995 Jun;26(3):209–210. doi: 10.1111/j.1365-2052.1995.tb03175.x. [DOI] [PubMed] [Google Scholar]
- Wallis J. W., Chrebet G., Brodsky G., Rolfe M., Rothstein R. A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell. 1989 Jul 28;58(2):409–419. doi: 10.1016/0092-8674(89)90855-6. [DOI] [PubMed] [Google Scholar]
- Wang H. T., Frackman S., Kowalisyn J., Esposito R. E., Elder R. Developmental regulation of SPO13, a gene required for separation of homologous chromosomes at meiosis I. Mol Cell Biol. 1987 Apr;7(4):1425–1435. doi: 10.1128/mcb.7.4.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams J. L., Urquhart B. G., Barendse B. Three bovine chromosome 15 microsatellite markers. Anim Genet. 1995 Apr;26(2):124–124. doi: 10.1111/j.1365-2052.1995.tb02648.x. [DOI] [PubMed] [Google Scholar]
- Williamson M. S., Game J. C., Fogel S. Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of pms1-1 and pms1-2. Genetics. 1985 Aug;110(4):609–646. doi: 10.1093/genetics/110.4.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu T. C., Lichten M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science. 1994 Jan 28;263(5146):515–518. doi: 10.1126/science.8290959. [DOI] [PubMed] [Google Scholar]
- Yerle M., Galman O., Lahbib-Mansais Y., Gellin J. Localization of the pig luteinizing hormone/choriogonadotropin receptor gene (LHCGR) by radioactive and nonradioactive in situ hybridization. Cytogenet Cell Genet. 1992;59(1):48–51. doi: 10.1159/000133198. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Redaelli L., Castiglioni B., Mezzelani A., Ferretti L. Five polymorphic bovine microsatellite loci: IDVGA-62A, IDVGA-71, IDVGA-82, IDVGA-88, IDVGA-90. Anim Genet. 1995 Oct;26(5):365–366. doi: 10.1111/j.1365-2052.1995.tb02676.x. [DOI] [PubMed] [Google Scholar]