Skip to main content
Genetics logoLink to Genetics
. 1996 Sep;144(1):401–408. doi: 10.1093/genetics/144.1.401

Polymorphism in Genes That Influence Sperm Displacement

T Prout 1, A G Clark 1
PMCID: PMC1207512  PMID: 8878703

Abstract

Paternity of offspring of multiply inseminated females is in many organisms highly skewed, with an advantage generally going to the male that most recently mated. Variation in sperm competitive ability can result in strong natural selection, and one expects that a gene that offers an advantage in sperm displacement would, all else being equal, be rapidly fixed, leaving low equilibrium levels of variability in sperm competition. However, empirical studies have demonstrated genetic variation in sperm displacement, begging the question of how this variation can be maintained. Here we develop a population genetic model to find conditions that maintain polymorphism in alleles that influence sperm displacement. We consider a one-locus model in which allelic variants have pleiotropic effects on fecundity and mating ability in addition to sperm displacement. This model can admit more than one stable polymorphism, and we find conditions for protected polymorphism. Induced overdominance is not necessary for stable polymorphism. These results have direct bearing on the observed variation in the ability of resident sperm to defend against displacement.

Full Text

The Full Text of this article is available as a PDF (755.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguadé M., Miyashita N., Langley C. H. Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics. 1992 Nov;132(3):755–770. doi: 10.1093/genetics/132.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aigaki T., Fleischmann I., Chen P. S., Kubli E. Ectopic expression of sex peptide alters reproductive behavior of female D. melanogaster. Neuron. 1991 Oct;7(4):557–563. doi: 10.1016/0896-6273(91)90368-a. [DOI] [PubMed] [Google Scholar]
  3. Boswell R. E., Mahowald A. P. tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell. 1985 Nov;43(1):97–104. doi: 10.1016/0092-8674(85)90015-7. [DOI] [PubMed] [Google Scholar]
  4. Chapman T., Liddle L. F., Kalb J. M., Wolfner M. F., Partridge L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature. 1995 Jan 19;373(6511):241–244. doi: 10.1038/373241a0. [DOI] [PubMed] [Google Scholar]
  5. Chen P. S., Stumm-Zollinger E., Aigaki T., Balmer J., Bienz M., Böhlen P. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell. 1988 Jul 29;54(3):291–298. doi: 10.1016/0092-8674(88)90192-4. [DOI] [PubMed] [Google Scholar]
  6. Clark A. G., Aguadé M., Prout T., Harshman L. G., Langley C. H. Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics. 1995 Jan;139(1):189–201. doi: 10.1093/genetics/139.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coulthart M. B., Singh R. S. Differing amounts of genetic polymorphism in testes and male accessory glands of Drosophila melanogaster and Drosophila simulans. Biochem Genet. 1988 Feb;26(1-2):153–164. doi: 10.1007/BF00555496. [DOI] [PubMed] [Google Scholar]
  8. Herndon L. A., Wolfner M. F. A Drosophila seminal fluid protein, Acp26Aa, stimulates egg laying in females for 1 day after mating. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10114–10118. doi: 10.1073/pnas.92.22.10114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kalb J. M., DiBenedetto A. J., Wolfner M. F. Probing the function of Drosophila melanogaster accessory glands by directed cell ablation. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8093–8097. doi: 10.1073/pnas.90.17.8093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Manning A. The control of sexual receptivity in female Drosophila. Anim Behav. 1967 Apr-Jul;15(2):239–250. doi: 10.1016/0003-3472(67)90006-1. [DOI] [PubMed] [Google Scholar]
  11. Thomas S., Singh R. S. A comprehensive study of genic variation in natural populations of Drosophila melanogaster. VII. Varying rates of genic divergence as revealed by two-dimensional electrophoresis. Mol Biol Evol. 1992 May;9(3):507–525. doi: 10.1093/oxfordjournals.molbev.a040738. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES