Skip to main content
Genetics logoLink to Genetics
. 1996 Oct;144(2):533–540. doi: 10.1093/genetics/144.2.533

Isolation of Two Apsa Suppressor Strains in Aspergillus Nidulans

M Kruger 1, R Fischer 1
PMCID: PMC1207548  PMID: 8889518

Abstract

Aspergillus nidulans reproduces asexually with single nucleated conidia. In apsA (anucleate primary sterigmata) strains, nuclear positioning is affected and conidiation is greatly reduced. To get further insights into the cellular functions of apsA, aconidial apsA strains were mutagenized and conidiating suppressor strains were isolated. The suppressors fell into two complementation groups, samA and samB (suppressor of anucleate metulae). samA mapped on linkage group I close to pyrG. The mutant allele was dominant in diploids homozygous for apsA. Viability of conidia of samA suppressor strains (samA(-); apsA(-)) was reduced to 50% in comparison to wild-type conidia. Eighty percent of viable spores produced small size colonies that were temperature- and benomyl-sensitive. samB mapped to chromosome VIII and was recessive. Viability of conidia from samB suppressor strains (apsA(-); samB(-)) was also affected but no small size colonies were observed. Both suppressors produced partial defects in sexual reproduction and both suppressed an apsA deletion mutation. In wild-type background the mutant loci affected hyphal growth rate (samA) or changed the colony morphology (samB) and inhibited sexual spore formation (samA and samB). Only subtle effects on conidiation were found. We conclude that both suppressor genes bypass the apsA function and are involved in microtubule-dependent processes.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chiu Y. H., Morris N. R. Extragenic suppressors of nudC3, a mutation that blocks nuclear migration in Aspergillus nidulans. Genetics. 1995 Oct;141(2):453–464. doi: 10.1093/genetics/141.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chowdhury S., Smith K. W., Gustin M. C. Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation. J Cell Biol. 1992 Aug;118(3):561–571. doi: 10.1083/jcb.118.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clutterbuck A. J. A mutational analysis of conidial development in Aspergillus nidulans. Genetics. 1969 Oct;63(2):317–327. doi: 10.1093/genetics/63.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clutterbuck A. J. Mutants of Aspergillus nidulans deficient in nuclear migration during hyphal growth and conidiation. Microbiology. 1994 May;140(Pt 5):1169–1174. doi: 10.1099/13500872-140-5-1169. [DOI] [PubMed] [Google Scholar]
  5. Clutterbuck A. J. The genetics of conidiophore pigmentation in Aspergillus nidulans. J Gen Microbiol. 1990 Sep;136(9):1731–1738. doi: 10.1099/00221287-136-9-1731. [DOI] [PubMed] [Google Scholar]
  6. Farkasovsky M., Küntzel H. Yeast Num1p associates with the mother cell cortex during S/G2 phase and affects microtubular functions. J Cell Biol. 1995 Nov;131(4):1003–1014. doi: 10.1083/jcb.131.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fischer R., Timberlake W. E. Aspergillus nidulans apsA (anucleate primary sterigmata) encodes a coiled-coil protein required for nuclear positioning and completion of asexual development. J Cell Biol. 1995 Feb;128(4):485–498. doi: 10.1083/jcb.128.4.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gems D. H., Clutterbuck A. J. Enhancers of conidiation mutants in Aspergillus nidulans. Genetics. 1994 May;137(1):79–85. doi: 10.1093/genetics/137.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gibson T. J., Hyvönen M., Musacchio A., Saraste M., Birney E. PH domain: the first anniversary. Trends Biochem Sci. 1994 Sep;19(9):349–353. doi: 10.1016/0968-0004(94)90108-2. [DOI] [PubMed] [Google Scholar]
  10. Goldman G. H., Morris N. R. Extragenic suppressors of a dynein mutation that blocks nuclear migration in Aspergillus nidulans. Genetics. 1995 Mar;139(3):1223–1232. doi: 10.1093/genetics/139.3.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoyt M. A., Stearns T., Botstein D. Chromosome instability mutants of Saccharomyces cerevisiae that are defective in microtubule-mediated processes. Mol Cell Biol. 1990 Jan;10(1):223–234. doi: 10.1128/mcb.10.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kirk K. E., Morris N. R. Either alpha-tubulin isogene product is sufficient for microtubule function during all stages of growth and differentiation in Aspergillus nidulans. Mol Cell Biol. 1993 Aug;13(8):4465–4476. doi: 10.1128/mcb.13.8.4465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kirk K. E., Morris N. R. The tubB alpha-tubulin gene is essential for sexual development in Aspergillus nidulans. Genes Dev. 1991 Nov;5(11):2014–2023. doi: 10.1101/gad.5.11.2014. [DOI] [PubMed] [Google Scholar]
  14. Kormanec J., Schaaff-Gerstenschläger I., Zimmermann F. K., Perecko D., Küntzel H. Nuclear migration in Saccharomyces cerevisiae is controlled by the highly repetitive 313 kDa NUM1 protein. Mol Gen Genet. 1991 Nov;230(1-2):277–287. doi: 10.1007/BF00290678. [DOI] [PubMed] [Google Scholar]
  15. Miller K. Y., Wu J., Miller B. L. StuA is required for cell pattern formation in Aspergillus. Genes Dev. 1992 Sep;6(9):1770–1782. doi: 10.1101/gad.6.9.1770. [DOI] [PubMed] [Google Scholar]
  16. Morris N. R., Enos A. P. Mitotic gold in a mold: Aspergillus genetics and the biology of mitosis. Trends Genet. 1992 Jan;8(1):32–37. doi: 10.1016/0168-9525(92)90022-v. [DOI] [PubMed] [Google Scholar]
  17. Morris N. R. Mitotic mutants of Aspergillus nidulans. Genet Res. 1975 Dec;26(3):237–254. doi: 10.1017/s0016672300016049. [DOI] [PubMed] [Google Scholar]
  18. Morris N. R., Xiang X., Beckwith S. M. Nuclear migration advances in fungi. Trends Cell Biol. 1995 Jul;5(7):278–282. doi: 10.1016/s0962-8924(00)89039-x. [DOI] [PubMed] [Google Scholar]
  19. Mulholland J., Preuss D., Moon A., Wong A., Drubin D., Botstein D. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J Cell Biol. 1994 Apr;125(2):381–391. doi: 10.1083/jcb.125.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Musacchio A., Gibson T., Rice P., Thompson J., Saraste M. The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem Sci. 1993 Sep;18(9):343–348. doi: 10.1016/0968-0004(93)90071-t. [DOI] [PubMed] [Google Scholar]
  21. Novick P., Botstein D. Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell. 1985 Feb;40(2):405–416. doi: 10.1016/0092-8674(85)90154-0. [DOI] [PubMed] [Google Scholar]
  22. Novick P., Osmond B. C., Botstein D. Suppressors of yeast actin mutations. Genetics. 1989 Apr;121(4):659–674. doi: 10.1093/genetics/121.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oakley B. R., Rinehart J. E. Mitochondria and nuclei move by different mechanisms in Aspergillus nidulans. J Cell Biol. 1985 Dec;101(6):2392–2397. doi: 10.1083/jcb.101.6.2392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oakley C. E., Oakley B. R. Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature. 1989 Apr 20;338(6217):662–664. doi: 10.1038/338662a0. [DOI] [PubMed] [Google Scholar]
  25. Plamann M., Minke P. F., Tinsley J. H., Bruno K. S. Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi. J Cell Biol. 1994 Oct;127(1):139–149. doi: 10.1083/jcb.127.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Prade R. A., Timberlake W. E. The Aspergillus nidulans brlA regulatory locus consists of overlapping transcription units that are individually required for conidiophore development. EMBO J. 1993 Jun;12(6):2439–2447. doi: 10.1002/j.1460-2075.1993.tb05898.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Revardel E., Aigle M. The NUM1 yeast gene: length polymorphism and physiological aspects of mutant phenotype. Yeast. 1993 May;9(5):495–506. doi: 10.1002/yea.320090505. [DOI] [PubMed] [Google Scholar]
  28. Robb M. J., Wilson M. A., Vierula P. J. A fungal actin-related protein involved in nuclear migration. Mol Gen Genet. 1995 Jun 10;247(5):583–590. doi: 10.1007/BF00290350. [DOI] [PubMed] [Google Scholar]
  29. Timberlake W. E. Molecular genetics of Aspergillus development. Annu Rev Genet. 1990;24:5–36. doi: 10.1146/annurev.ge.24.120190.000253. [DOI] [PubMed] [Google Scholar]
  30. Timberlake W. E. Temporal and spatial controls of Aspergillus development. Curr Opin Genet Dev. 1991 Oct;1(3):351–357. doi: 10.1016/s0959-437x(05)80299-0. [DOI] [PubMed] [Google Scholar]
  31. Upshall A., Mortimore I. D. Isolation of aneuploid-generating mutants of Aspergillus nidulans, one of which is defective in interphase of the cell cycle. Genetics. 1984 Sep;108(1):107–121. doi: 10.1093/genetics/108.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weil C. F., Oakley C. E., Oakley B. R. Isolation of mip (microtubule-interacting protein) mutations of Aspergillus nidulans. Mol Cell Biol. 1986 Aug;6(8):2963–2968. doi: 10.1128/mcb.6.8.2963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wertman K. F., Drubin D. G., Botstein D. Systematic mutational analysis of the yeast ACT1 gene. Genetics. 1992 Oct;132(2):337–350. doi: 10.1093/genetics/132.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Willins D. A., Xiang X., Morris N. R. An alpha tubulin mutation suppresses nuclear migration mutations in Aspergillus nidulans. Genetics. 1995 Dec;141(4):1287–1298. doi: 10.1093/genetics/141.4.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Xiang X., Osmani A. H., Osmani S. A., Xin M., Morris N. R. NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol Biol Cell. 1995 Mar;6(3):297–310. doi: 10.1091/mbc.6.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES