Abstract
In the fruitfly Drosophila melanogaster, the four male-specific lethal (msl) genes are required to achieve dosage compensation of the male X chromosome. The MSL proteins are thought to interact with cis-acting sites that confer dosage compensation to nearby genes, as they are detected at hundreds of discrete sites along the length of the polytene X chromosome in males but not in females. The histone H4 acetylated isoform, H4Ac16, colocalizes with the MSL proteins at a majority of sites on the D. melanogaster X chromosome. Using polytene chromosome immunostaining of other species from the genus Drosophila, we found that X chromosome association of MSL proteins and H4Ac16 is conserved despite differences in the sex chromosome karyotype between species. Our results support a model in which cis-acting regulatory sites for dosage compensation evolve on a neo-X chromosome arm in response to the degeneration of its former homologue.
Full Text
The Full Text of this article is available as a PDF (4.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham I., Lucchesi J. C. Dosage compensation of genes on the left and right arms of the X chromosome of Drosophila pseudoobscura and Drosophila willistoni. Genetics. 1974 Dec;78(4):1119–1126. doi: 10.1093/genetics/78.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker B. S., Gorman M., Marín I. Dosage compensation in Drosophila. Annu Rev Genet. 1994;28:491–521. doi: 10.1146/annurev.ge.28.120194.002423. [DOI] [PubMed] [Google Scholar]
- Bashaw G. J., Baker B. S. The msl-2 dosage compensation gene of Drosophila encodes a putative DNA-binding protein whose expression is sex specifically regulated by Sex-lethal. Development. 1995 Oct;121(10):3245–3258. doi: 10.1242/dev.121.10.3245. [DOI] [PubMed] [Google Scholar]
- Belote J. M., Lucchesi J. C. Control of X chromosome transcription by the maleless gene in Drosophila. Nature. 1980 Jun 19;285(5766):573–575. doi: 10.1038/285573a0. [DOI] [PubMed] [Google Scholar]
- Bone J. R., Lavender J., Richman R., Palmer M. J., Turner B. M., Kuroda M. I. Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev. 1994 Jan;8(1):96–104. doi: 10.1101/gad.8.1.96. [DOI] [PubMed] [Google Scholar]
- Charlesworth B. Model for evolution of Y chromosomes and dosage compensation. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5618–5622. doi: 10.1073/pnas.75.11.5618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper M. K., Hamblen-Coyle M. J., Liu X., Rutila J. E., Hall J. C. Dosage compensation of the period gene in Drosophila melanogaster. Genetics. 1994 Nov;138(3):721–732. doi: 10.1093/genetics/138.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOBZHANSKY T. [The X-chromosome in the larval salivary glands of hybrids Drosophila insularis x Drosophila tropicalis]. Chromosoma. 1957;8(6):691–698. doi: 10.1007/BF01259527. [DOI] [PubMed] [Google Scholar]
- Gorman M., Franke A., Baker B. S. Molecular characterization of the male-specific lethal-3 gene and investigations of the regulation of dosage compensation in Drosophila. Development. 1995 Feb;121(2):463–475. doi: 10.1242/dev.121.2.463. [DOI] [PubMed] [Google Scholar]
- Gorman M., Kuroda M. I., Baker B. S. Regulation of the sex-specific binding of the maleless dosage compensation protein to the male X chromosome in Drosophila. Cell. 1993 Jan 15;72(1):39–49. doi: 10.1016/0092-8674(93)90048-u. [DOI] [PubMed] [Google Scholar]
- Gutierrez A. G., Christensen A. C., Manning J. E., Lucchesi J. C. Cloning and dosage compensation of the 6-phosphogluconate dehydrogenase gene (Pgd+) of Drosophila melanogaster. Dev Genet. 1989;10(3):155–161. doi: 10.1002/dvg.1020100305. [DOI] [PubMed] [Google Scholar]
- Hazelrigg T., Levis R., Rubin G. M. Transformation of white locus DNA in drosophila: dosage compensation, zeste interaction, and position effects. Cell. 1984 Feb;36(2):469–481. doi: 10.1016/0092-8674(84)90240-x. [DOI] [PubMed] [Google Scholar]
- Krishnan R., Swanson K. D., Ganguly R. Dosage compensation of a retina-specific gene in Drosophila miranda. Chromosoma. 1991 Feb;100(2):125–133. doi: 10.1007/BF00418246. [DOI] [PubMed] [Google Scholar]
- Kuroda M. I., Kernan M. J., Kreber R., Ganetzky B., Baker B. S. The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell. 1991 Sep 6;66(5):935–947. doi: 10.1016/0092-8674(91)90439-6. [DOI] [PubMed] [Google Scholar]
- Lakhotia S. C. Chromosomal basis of dosage compensation in Drosophila. II. The DNA replication patterns of the male X-chromosome in an autosome--X insertion in D. melanogaster. Genet Res. 1970 Jun;15(3):301–307. doi: 10.1017/s0016672300001646. [DOI] [PubMed] [Google Scholar]
- Levis R., Hazelrigg T., Rubin G. M. Separable cis-acting control elements for expression of the white gene of Drosophila. EMBO J. 1985 Dec 16;4(13A):3489–3499. doi: 10.1002/j.1460-2075.1985.tb04108.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowenhaupt K., Rich A., Pardue M. L. Nonrandom distribution of long mono- and dinucleotide repeats in Drosophila chromosomes: correlations with dosage compensation, heterochromatin, and recombination. Mol Cell Biol. 1989 Mar;9(3):1173–1182. doi: 10.1128/mcb.9.3.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucchesi J. C. Gene dosage compensation and the evolution of sex chromosomes. Science. 1978 Nov 17;202(4369):711–716. doi: 10.1126/science.715437. [DOI] [PubMed] [Google Scholar]
- Lucchesi J. C., Manning J. E. Gene dosage compensation in Drosophila melanogaster. Adv Genet. 1987;24:371–429. doi: 10.1016/s0065-2660(08)60013-9. [DOI] [PubMed] [Google Scholar]
- Macknight R H. The Sex-Determining Mechanism of Drosophila Miranda. Genetics. 1939 Mar;24(2):180–201. doi: 10.1093/genetics/24.2.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukherjee A. S., Chatterjee S. N. Chromosomal basis of dosage compensation in Drosophila VIII. Faster replication and hyperactivity of both arms of the X-chromosome in males of Drosophila pseudoobscura and their possible significance. Chromosoma. 1975 Nov 24;53(2):91–105. doi: 10.1007/BF00333038. [DOI] [PubMed] [Google Scholar]
- Muller H. J., Kaplan W. D. The dosage compensation of Drosophila and mammals as showing the accuracy of the normal type. Genet Res. 1966 Aug;8(1):41–59. doi: 10.1017/s0016672300009903. [DOI] [PubMed] [Google Scholar]
- Norman R. A., Doane W. W. Dosage compensation and dietary glucose repression of larval amylase activity in Drosophila miranda. Biochem Genet. 1990 Dec;28(11-12):601–613. doi: 10.1007/BF00553953. [DOI] [PubMed] [Google Scholar]
- Nurminsky D. I., Moriyama E. N., Lozovskaya E. R., Hartl D. L. Molecular phylogeny and genome evolution in the Drosophila virilis species group: duplications of the alcohol dehydrogenase gene. Mol Biol Evol. 1996 Jan;13(1):132–149. doi: 10.1093/oxfordjournals.molbev.a025551. [DOI] [PubMed] [Google Scholar]
- Palmer M. J., Mergner V. A., Richman R., Manning J. E., Kuroda M. I., Lucchesi J. C. The male-specific lethal-one (msl-1) gene of Drosophila melanogaster encodes a novel protein that associates with the X chromosome in males. Genetics. 1993 Jun;134(2):545–557. doi: 10.1093/genetics/134.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer M. J., Richman R., Richter L., Kuroda M. I. Sex-specific regulation of the male-specific lethal-1 dosage compensation gene in Drosophila. Genes Dev. 1994 Mar 15;8(6):698–706. doi: 10.1101/gad.8.6.698. [DOI] [PubMed] [Google Scholar]
- Pardue M. L., Lowenhaupt K., Rich A., Nordheim A. (dC-dA)n.(dG-dT)n sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J. 1987 Jun;6(6):1781–1789. doi: 10.1002/j.1460-2075.1987.tb02431.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qian S., Pirrotta V. Dosage compensation of the Drosophila white gene requires both the X chromosome environment and multiple intragenic elements. Genetics. 1995 Feb;139(2):733–744. doi: 10.1093/genetics/139.2.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rice W. R. Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics. 1987 May;116(1):161–167. doi: 10.1093/genetics/116.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roehrdanz R. L., Kitchens J. M., Lucchesi J. C. Lack of dosage compensation for an autosomal gene relocated to the X chromosome in Drosophila melanogaster. Genetics. 1977 Mar;85(3):489–496. doi: 10.1093/genetics/85.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roseman R. R., Swan J. M., Geyer P. K. A Drosophila insulator protein facilitates dosage compensation of the X chromosome min-white gene located at autosomal insertion sites. Development. 1995 Nov;121(11):3573–3582. doi: 10.1242/dev.121.11.3573. [DOI] [PubMed] [Google Scholar]
- Russo C. A., Takezaki N., Nei M. Molecular phylogeny and divergence times of drosophilid species. Mol Biol Evol. 1995 May;12(3):391–404. doi: 10.1093/oxfordjournals.molbev.a040214. [DOI] [PubMed] [Google Scholar]
- Sass H., Meselson M. Dosage compensation of the Drosophila pseudoobscura Hsp82 gene and the Drosophila melanogaster Adh gene at ectopic sites in D. melanogaster. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6795–6799. doi: 10.1073/pnas.88.15.6795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scholnick S. B., Morgan B. A., Hirsh J. The cloned dopa decarboxylase gene is developmentally regulated when reintegrated into the Drosophila genome. Cell. 1983 Aug;34(1):37–45. doi: 10.1016/0092-8674(83)90134-4. [DOI] [PubMed] [Google Scholar]
- Spicer G. S. Molecular evolution and phylogeny of the Drosophila virilis species group as inferred by two-dimensional electrophoresis. J Mol Evol. 1991 Oct;33(4):379–394. doi: 10.1007/BF02102868. [DOI] [PubMed] [Google Scholar]
- Spradling A. C., Rubin G. M. The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell. 1983 Aug;34(1):47–57. doi: 10.1016/0092-8674(83)90135-6. [DOI] [PubMed] [Google Scholar]
- Steinemann M., Steinemann S. Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7591–7595. doi: 10.1073/pnas.89.16.7591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinemann M., Steinemann S., Lottspeich F. How Y chromosomes become genetically inert. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5737–5741. doi: 10.1073/pnas.90.12.5737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinemann M., Steinemann S. Preferential Y chromosomal location of TRIM, a novel transposable element of Drosophila miranda, obscura group. Chromosoma. 1991 Dec;101(3):169–179. doi: 10.1007/BF00355366. [DOI] [PubMed] [Google Scholar]
- Steinemann M., Steinemann S., Turner B. M. Evolution of dosage compensation. Chromosome Res. 1996 Apr;4(3):185–190. doi: 10.1007/BF02254957. [DOI] [PubMed] [Google Scholar]
- Strobel E., Pelling C., Arnheim N. Incomplete dosage compensation in an evolving Drosophila sex chromosome. Proc Natl Acad Sci U S A. 1978 Feb;75(2):931–935. doi: 10.1073/pnas.75.2.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tominaga H., Shiba T., Narise S. Structure of Drosophila virilis glycerol-3-phosphate dehydrogenase gene and a comparison with the Drosophila melanogaster gene. Biochim Biophys Acta. 1992 Jun 15;1131(2):233–238. doi: 10.1016/0167-4781(92)90086-f. [DOI] [PubMed] [Google Scholar]
- Turner B. M., Birley A. J., Lavender J. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell. 1992 Apr 17;69(2):375–384. doi: 10.1016/0092-8674(92)90417-b. [DOI] [PubMed] [Google Scholar]
- Turner B. M., Fellows G. Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur J Biochem. 1989 Jan 15;179(1):131–139. doi: 10.1111/j.1432-1033.1989.tb14530.x. [DOI] [PubMed] [Google Scholar]
- Turner B. M., O'Neill L. P., Allan I. M. Histone H4 acetylation in human cells. Frequency of acetylation at different sites defined by immunolabeling with site-specific antibodies. FEBS Lett. 1989 Aug 14;253(1-2):141–145. doi: 10.1016/0014-5793(89)80947-0. [DOI] [PubMed] [Google Scholar]
- WESTERGAARD M. The mechanism of sex determination in dioecious flowering plants. Adv Genet. 1958;9:217–281. doi: 10.1016/s0065-2660(08)60163-7. [DOI] [PubMed] [Google Scholar]
- Zhou S., Yang Y., Scott M. J., Pannuti A., Fehr K. C., Eisen A., Koonin E. V., Fouts D. L., Wrightsman R., Manning J. E. Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster. EMBO J. 1995 Jun 15;14(12):2884–2895. doi: 10.1002/j.1460-2075.1995.tb07288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]