Skip to main content
Genetics logoLink to Genetics
. 1996 Oct;144(2):785–792. doi: 10.1093/genetics/144.2.785

Targeted Mutagenesis of a Candidate T Complex Responder Gene in Mouse T Haplotypes Does Not Eliminate Transmission Ratio Distortion

U K Ewulonu 1, K Schimenti 1, B Kuemerle 1, T Magnuson 1, J Schimenti 1
PMCID: PMC1207569  PMID: 8889539

Abstract

Transmission ratio distortion (TRD) associated with mouse t haplotypes causes +/t males to transmit the t-bearing chromosome to nearly all their offspring. Of the several genes involved in this phenomenon, the t complex responder (Tcr(t)) locus is absolutely essential for TRD to occur. A candidate Tcr(t) gene called Tcp10b(t) was previously cloned from the genetically defined Tcr(t) region. Its location, restricted expression in testis, and a unique postmeiotic alternative splicing pattern supported the idea that Tcp10b(t) was Tcr(t). To test this hypothesis in a functional assay, ES cells were derived from a viable partial t haplotype, and the Tcp10b(t) gene was mutated by homologous recombination. Mutant mice were mated to appropriate partial t haplotypes to determine whether the targeted chromosome exhibited transmission ratios characteristic of the responder. The results demonstrated that the targeted chromosome retained full responder activity. Hence, Tcp10b(t) does not appear to be Tcr(t). These and other observations necessitate a reevaluation of genetic mapping data and the actual nature of the responder.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agulnik A. I., Agulnik S. I., Ruvinsky A. O. Meiotic drive of t haplotypes: chromosome segregation in mice with tertiary trisomy. Genet Res. 1991 Feb;57(1):51–54. doi: 10.1017/s0016672300029037. [DOI] [PubMed] [Google Scholar]
  2. Braun R. E., Behringer R. R., Peschon J. J., Brinster R. L., Palmiter R. D. Genetically haploid spermatids are phenotypically diploid. Nature. 1989 Jan 26;337(6205):373–376. doi: 10.1038/337373a0. [DOI] [PubMed] [Google Scholar]
  3. Brown J., Cebra-Thomas J. A., Bleil J. D., Wassarman P. M., Silver L. M. A premature acrosome reaction is programmed by mouse t haplotypes during sperm differentiation and could play a role in transmission ratio distortion. Development. 1989 Aug;106(4):769–773. doi: 10.1242/dev.106.4.769. [DOI] [PubMed] [Google Scholar]
  4. Bullard D. C., Schimenti J. C. Molecular cloning and genetic mapping of the t complex responder candidate gene family. Genetics. 1990 Apr;124(4):957–966. doi: 10.1093/genetics/124.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bullard D. C., Schimenti J. C. Molecular structure of Tcp-10 genes from the t complex responder locus. Mamm Genome. 1991;1(4):228–234. doi: 10.1007/BF00352329. [DOI] [PubMed] [Google Scholar]
  6. Bullard D. C., Ticknor C., Schimenti J. C. Functional analysis of a t complex responder locus transgene in mice. Mamm Genome. 1992;3(10):579–587. doi: 10.1007/BF00350625. [DOI] [PubMed] [Google Scholar]
  7. Capecchi M. R. Altering the genome by homologous recombination. Science. 1989 Jun 16;244(4910):1288–1292. doi: 10.1126/science.2660260. [DOI] [PubMed] [Google Scholar]
  8. Cebra-Thomas J. A., Decker C. L., Snyder L. C., Pilder S. H., Silver L. M. Allele- and haploid-specific product generated by alternative splicing from a mouse t complex responder locus candidate. Nature. 1991 Jan 17;349(6306):239–241. doi: 10.1038/349239a0. [DOI] [PubMed] [Google Scholar]
  9. Fox H. S., Martin G. R., Lyon M. F., Herrmann B., Frischauf A. M., Lehrach H., Silver L. M. Molecular probes define different regions of the mouse t complex. Cell. 1985 Jan;40(1):63–69. doi: 10.1016/0092-8674(85)90309-5. [DOI] [PubMed] [Google Scholar]
  10. Hammer M. F., Schimenti J., Silver L. M. Evolution of mouse chromosome 17 and the origin of inversions associated with t haplotypes. Proc Natl Acad Sci U S A. 1989 May;86(9):3261–3265. doi: 10.1073/pnas.86.9.3261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Howard C. A., Gummere G. R., Lyon M. F., Bennett D., Artzt K. Genetic and molecular analysis of the proximal region of the mouse t-complex using new molecular probes and partial t-haplotypes. Genetics. 1990 Dec;126(4):1103–1114. doi: 10.1093/genetics/126.4.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Islam S. D., Pilder S. H., Decker C. L., Cebra-Thomas J. A., Silver L. M. The human homolog of a candidate mouse t complex responder gene: conserved motifs and evolution with punctuated equilibria. Hum Mol Genet. 1993 Dec;2(12):2075–2079. doi: 10.1093/hmg/2.12.2075. [DOI] [PubMed] [Google Scholar]
  13. Lyon M. F. Male sterility of the mouse t-complex is due to homozygosity of the distorter genes. Cell. 1986 Jan 31;44(2):357–363. doi: 10.1016/0092-8674(86)90770-1. [DOI] [PubMed] [Google Scholar]
  14. Lyon M. F. Transmission ratio distortion in mouse t-haplotypes is due to multiple distorter genes acting on a responder locus. Cell. 1984 Jun;37(2):621–628. doi: 10.1016/0092-8674(84)90393-3. [DOI] [PubMed] [Google Scholar]
  15. Lyon M. F., Zenthon J. Differences in or near the responder region of complete and partial mouse t-haplotypes. Genet Res. 1987 Aug;50(1):29–34. doi: 10.1017/s0016672300023302. [DOI] [PubMed] [Google Scholar]
  16. McMahon A. P., Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell. 1990 Sep 21;62(6):1073–1085. doi: 10.1016/0092-8674(90)90385-r. [DOI] [PubMed] [Google Scholar]
  17. Morita T., Murata K., Sakaizumi M., Kubota H., Delarbre C., Gachelin G., Willison K., Matsushiro A. Mouse t haplotype-specific double insertion of B2 repetitive sequences in the Tcp-1 intron 7. Mamm Genome. 1993;4(1):58–59. doi: 10.1007/BF00364666. [DOI] [PubMed] [Google Scholar]
  18. Nadeau J. H., Varnum D., Burkart D. Genetic evidence for two t complex tail interaction (tct) loci in t haplotypes. Genetics. 1989 Aug;122(4):895–903. doi: 10.1093/genetics/122.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Olds-Clarke P., Peitz B. Fertility of sperm from t/+ mice: evidence that +-bearing sperm are dysfunctional. Genet Res. 1986 Feb;47(1):49–52. doi: 10.1017/s0016672300024502. [DOI] [PubMed] [Google Scholar]
  20. Pilder S. H., Decker C. L., Islam S., Buck C., Cebra-Thomas J. A., Silver L. M. Concerted evolution of the mouse Tcp-10 gene family: implications for the functional basis of t haplotype transmission ratio distortion. Genomics. 1992 Jan;12(1):35–41. doi: 10.1016/0888-7543(92)90403-f. [DOI] [PubMed] [Google Scholar]
  21. Ramírez-Solis R., Rivera-Pérez J., Wallace J. D., Wims M., Zheng H., Bradley A. Genomic DNA microextraction: a method to screen numerous samples. Anal Biochem. 1992 Mar;201(2):331–335. doi: 10.1016/0003-2697(92)90347-a. [DOI] [PubMed] [Google Scholar]
  22. Rosen L. L., Bullard D. C., Silver L. M., Schimenti J. C. Molecular cloning of the t complex responder genetic locus. Genomics. 1990 Sep;8(1):134–140. doi: 10.1016/0888-7543(90)90235-m. [DOI] [PubMed] [Google Scholar]
  23. Schimenti J., Vold L., Socolow D., Silver L. M. An unstable family of large DNA elements in the center of the mouse t complex. J Mol Biol. 1987 Apr 20;194(4):583–594. doi: 10.1016/0022-2836(87)90235-x. [DOI] [PubMed] [Google Scholar]
  24. Seitz A. W., Bennett D. Transmission distortion of t-haplotypes is due to interactions between meiotic partners. Nature. 1985 Jan 10;313(5998):143–144. doi: 10.1038/313143a0. [DOI] [PubMed] [Google Scholar]
  25. Silver L. M., Olds-Clarke P. Transmission ratio distortion of mouse t haplotypes is not a consequence of wild-type sperm degeneration. Dev Biol. 1984 Sep;105(1):250–252. doi: 10.1016/0012-1606(84)90282-3. [DOI] [PubMed] [Google Scholar]
  26. Snyder L. C., Silver L. M. Distortion of transmission ratio by a candidate t complex responder locus transgene. Mamm Genome. 1992;3(10):588–596. doi: 10.1007/BF00350626. [DOI] [PubMed] [Google Scholar]
  27. Solter D., Knowles B. B. Immunosurgery of mouse blastocyst. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5099–5102. doi: 10.1073/pnas.72.12.5099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tokuyasu K. T., Peacock W. J., Hardy R. W. Dynamics of spermiogenesis in Drosophila melanogaster. I. Individualization process. Z Zellforsch Mikrosk Anat. 1972;124(4):479–506. doi: 10.1007/BF00335253. [DOI] [PubMed] [Google Scholar]
  29. Tomasiewicz H., Ono K., Yee D., Thompson C., Goridis C., Rutishauser U., Magnuson T. Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron. 1993 Dec;11(6):1163–1174. doi: 10.1016/0896-6273(93)90228-j. [DOI] [PubMed] [Google Scholar]
  30. Wu C. I., Lyttle T. W., Wu M. L., Lin G. F. Association between a satellite DNA sequence and the Responder of Segregation Distorter in D. melanogaster. Cell. 1988 Jul 15;54(2):179–189. doi: 10.1016/0092-8674(88)90550-8. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES