Skip to main content
Genetics logoLink to Genetics
. 1996 Oct;144(2):793–803. doi: 10.1093/genetics/144.2.793

Genepool Variation in Genus Glycine Subgenus Soja Revealed by Polymorphic Nuclear and Chloroplast Microsatellites

W Powell 1, M Morgante 1, J J Doyle 1, J W McNicol 1, S V Tingey 1, A J Rafalski 1
PMCID: PMC1207570  PMID: 8889540

Abstract

A combination of nuclear and chloroplast simple sequence repeats (SSRs) have been used to investigate the levels and pattern of variability detected in Glycine max and G. soja genotypes. Based on the analysis of 700 soybean genotypes with 115 restriction fragment length polymorphism (RFLP) probes, 12 accessions were identified that represent 92% of the allelic variability detected in this genepool. These 12 core genotypes together with a sample of G. max and G. soja accessions were evaluated with 11 nuclear SSRs that detected 129 alleles. Compared with the other G. max and G. soja genotypes sampled, the core genotypes represent 40% of the allelic variability detected with SSRs. Despite the multi-allelic nature of soybean SSRs, dendrograms representing phenetic relationships between accessions clustered according to their subspecies origin. In addition to biparentally inherited nuclear SSRs, two uniparentally (maternally) transmitted chloroplast SSRs were also studied. A total of seven haplotypes were identified, and diversity indices of 0.405 +/- 0.088 and 0.159 +/- 0.071 were obtained for the two chloroplast SSRs. The availability of polymorphic SSR loci in the chloroplast genome provides new opportunities to investigate cytonuclear interactions in plants.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akkaya M. S., Bhagwat A. A., Cregan P. B. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics. 1992 Dec;132(4):1131–1139. doi: 10.1093/genetics/132.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  3. Dong J., Wagner D. B. Paternally inherited chloroplast polymorphism in Pinus: estimation of diversity and population subdivision, and tests of disequilibrium with a maternally inherited mitochondrial polymorphism. Genetics. 1994 Mar;136(3):1187–1194. doi: 10.1093/genetics/136.3.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Keim P., Diers B. W., Olson T. C., Shoemaker R. C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics. 1990 Nov;126(3):735–742. doi: 10.1093/genetics/126.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kolchinsky A., Gresshoff P. M. Nucleotide sequence of the 5S rRNA gene from Glycine soja. Plant Mol Biol. 1992 Sep;19(6):1045–1047. doi: 10.1007/BF00040535. [DOI] [PubMed] [Google Scholar]
  6. Maughan P. J., Saghi Maroof M. A., Buss G. R. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome. 1995 Aug;38(4):715–723. doi: 10.1139/g95-090. [DOI] [PubMed] [Google Scholar]
  7. Morgante M., Olivieri A. M. PCR-amplified microsatellites as markers in plant genetics. Plant J. 1993 Jan;3(1):175–182. [PubMed] [Google Scholar]
  8. Morgante M., Rafalski A., Biddle P., Tingey S., Olivieri A. M. Genetic mapping and variability of seven soybean simple sequence repeat loci. Genome. 1994 Oct;37(5):763–769. doi: 10.1139/g94-109. [DOI] [PubMed] [Google Scholar]
  9. Nagao R. T., Czarnecka E., Gurley W. B., Schöffl F., Key J. L. Genes for low-molecular-weight heat shock proteins of soybeans: sequence analysis of a multigene family. Mol Cell Biol. 1985 Dec;5(12):3417–3428. doi: 10.1128/mcb.5.12.3417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Powell W., Morgante M., Andre C., McNicol J. W., Machray G. C., Doyle J. J., Tingey S. V., Rafalski J. A. Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr Biol. 1995 Sep 1;5(9):1023–1029. doi: 10.1016/s0960-9822(95)00206-5. [DOI] [PubMed] [Google Scholar]
  12. Powell W., Morgante M., McDevitt R., Vendramin G. G., Rafalski J. A. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7759–7763. doi: 10.1073/pnas.92.17.7759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Senior M. L., Heun M. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome. 1993 Oct;36(5):884–889. doi: 10.1139/g93-116. [DOI] [PubMed] [Google Scholar]
  14. Shibata D., Kato T., Tanaka K. Nucleotide sequences of a soybean lipoxygenase gene and the short intergenic region between an upstream lipoxygenase gene. Plant Mol Biol. 1991 Feb;16(2):353–359. doi: 10.1007/BF00020569. [DOI] [PubMed] [Google Scholar]
  15. Spielmann A., Roux E., von Allmen J. M., Stutz E. The soybean chloroplast genome: complete sequence of the rps19 gene, including flanking parts containing exon 2 of rpl2 (upstream), but rpl22 (downstream). Nucleic Acids Res. 1988 Feb 11;16(3):1199–1199. doi: 10.1093/nar/16.3.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989 Aug 25;17(16):6463–6471. doi: 10.1093/nar/17.16.6463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weber J. L., May P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989 Mar;44(3):388–396. [PMC free article] [PubMed] [Google Scholar]
  18. Wintz H., Chen H. C., Pillay D. T. Presence of a chloroplast-like elongator tRNAMet gene in the mitochondrial genomes of soybean and Arabidopsis thaliana. Curr Genet. 1988 Mar;13(3):255–260. doi: 10.1007/BF00387772. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES